版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江西省吉安市新干縣第二中學2025屆高一下數(shù)學期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對數(shù)列,“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.非充分非必要條件2.設集合,,,則()A. B. C. D.3.已知,則下列4個角中與角終邊相同的是()A. B. C. D.4.若a,b,c∈R,且滿足a>b>c,則下列不等式成立的是()A.1a<C.a(chǎn)c25.不等式的解集為()A. B. C. D.6.已知{an}是等差數(shù)列,且a2+a5+a8+a11=48,則a6+a7=()A.12 B.16 C.20 D.247.我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:“一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈多少?”現(xiàn)有類似問題:一座5層塔共掛了363盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的3倍,則塔的底層共有燈A.81盞 B.112盞 C.162盞 D.243盞8.垂直于同一條直線的兩條直線一定()A.平行 B.相交 C.異面 D.以上都有可能9.已知,,則()A. B. C. D.10.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列滿足,則__________.12.67是等差數(shù)列-5,1,7,13,……中第項,則___________________.13.函數(shù)的最小正周期是________.14.已知為所在平面內(nèi)一點,且,則_____15.函數(shù)的定義域記作集合,隨機地投擲一枚質(zhì)地均勻的正方體骰子(骰子的每個面上分別標有點數(shù),,,),記骰子向上的點數(shù)為,則事件“”的概率為________.16.已知,是夾角為的兩個單位向量,向量,,若,則實數(shù)的值為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量=(sinx,cosx),=(cosx,cosx),=(2,1).(1)若∥,求sinxcosx的值;(2)若0<x≤,求函數(shù)f(x)=·的值域.18.已知,,函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)當時,求函數(shù)的值域.19.已知數(shù)列滿足,,其中實數(shù).(I)求證:數(shù)列是遞增數(shù)列;(II)當時.(i)求證:;(ii)若,設數(shù)列的前項和為,求整數(shù)的值,使得最?。?0.如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.(1)要使矩形的面積大于64平方米,則的長應在什么范圍內(nèi)?(2)當?shù)拈L為多少時,矩形花壇的面積最小?并求出最小值.21.設為正項數(shù)列的前項和,且滿足.(1)求證:為等差數(shù)列;(2)令,,若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)遞增數(shù)列的性質(zhì)和充分必要條件判斷即可【詳解】對于任意成立可以推出其前n項和數(shù)列為遞增數(shù)列,但反過來不成立如當時其,此時為遞增數(shù)列但所以“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的充分非必要條件故選:A【點睛】要說明一個命題不成立,只需舉出一個反例即可.2、A【解析】因為,所以,又因為,,故選A.3、C【解析】
先寫出與角終邊相同的角的集合,再給k取值得解.【詳解】由題得與角終邊相同的集合為,當k=6時,.所以與角終邊相同的角為.故選C【點睛】本題主要考查終邊相同的角的求法,意在考查學生對該知識的理解掌握水平.4、C【解析】
通過反例可依次排除A,B,D選項;根據(jù)不等式的性質(zhì)可判斷出C正確.【詳解】A選項:若a=1,b=-2,則1a>1B選項:若a=1,b=12,則1aC選項:c2+1>0又a>b∴ac2D選項:當c=0時,ac=bc本題正確選項:C【點睛】本題考查不等式性質(zhì)的應用,解決此類問題通常采用排除法,利用反例來排除錯誤選項即可,屬于基礎題.5、B【解析】
可將分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.【詳解】原不等式可化為,其解集為,故選B.【點睛】一般地,等價于,而則等價于,注意分式不等式轉(zhuǎn)化為整式不等式時分母不為零.6、D【解析】由等差數(shù)列的性質(zhì)可得,則,故選D.7、D【解析】
從塔頂?shù)剿酌繉訜舯K數(shù)可構成一個公比為3的等比數(shù)列,其和為1.由等比數(shù)列的知識可得.【詳解】從塔頂?shù)剿酌繉訜舯K數(shù)依次記為a1,a2,a3故選D.【點睛】本題考查等比數(shù)列的應用,解題關鍵是根據(jù)實際意義構造一個等比數(shù)列,把問題轉(zhuǎn)化為等比數(shù)列的問題.8、D【解析】試題分析:根據(jù)在同一平面內(nèi)兩直線平行或相交,在空間內(nèi)兩直線平行、相交或異面判斷.解:分兩種情況:①在同一平面內(nèi),垂直于同一條直線的兩條直線平行;②在空間內(nèi)垂直于同一條直線的兩條直線可以平行、相交或異面.故選D考點:空間中直線與直線之間的位置關系.9、C【解析】
由放縮法可得出,再利用特殊值法以及不等式的基本性質(zhì)可判斷各選項中不等式的正誤.【詳解】,,可得.取,,,則A、D選項中的不等式不成立;取,,,則B選項中的不等式不成立;且,由不等式的基本性質(zhì)得,C選項中的不等式成立.故選:C.【點睛】本題考查不等式正誤的判斷,一般利用不等式的性質(zhì)或特殊值法進行判斷,考查推理能力,屬于中等題.10、B【解析】
根據(jù),在直線異側(cè)或其中一點在直線上列不等式求解即可.【詳解】因為直線與線段相交,所以,,在直線異側(cè)或其中一點在直線上,所以,解得或,故選B.【點睛】本題主要考查點與直線的位置關系,考查了一元二次不等式的解法,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由等差數(shù)列的性質(zhì)計算.【詳解】∵是等差數(shù)列,∴,∴.故答案為:1.【點睛】本題考查等差數(shù)列的性質(zhì),屬于基礎題.等差數(shù)列的性質(zhì)如下:在等差數(shù)列中,,則.12、13【解析】
根據(jù)數(shù)列寫出等差數(shù)列通項公式,再令算出即可.【詳解】由題意,首項為-5,公差為,則等差數(shù)列通項公式,令,則故答案為:13.【點睛】等差數(shù)列首項為公差為,則通項公式13、【解析】
根據(jù)周期公式即可求解.【詳解】函數(shù)的最小正周期故答案為:【點睛】本題主要考查了正弦型函數(shù)的周期,屬于基礎題.14、【解析】
將向量進行等量代換,然后做出對應圖形,利用平面向量基本定理進行表示即可.【詳解】解:設,則根據(jù)題意可得,,如圖所示,作,垂足分別為,則又,,故答案為.【點睛】本題考查了平面向量基本定理及其意義,兩個向量的加減法及其幾何意義,屬于中檔題.15、【解析】要使函數(shù)有意義,則且,即且,即,隨機地投擲一枚質(zhì)地均勻的正方體骰子,記骰子向上的點數(shù)為,則,則事件“”的概率為.16、【解析】
由題意得,且,,由=,解得即可.【詳解】已知,是夾角為的兩個單位向量,所以,得,若解得故答案為【點睛】本題考查了向量數(shù)量積的運算性質(zhì),考查了計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由向量共線得tanx=2,再由同角三角函數(shù)基本關系得sinxcosx=,即可求解;(2)整理f(x)=·=sin(2x+)+,由三角函數(shù)性質(zhì)即可求解最值【詳解】(1)∵∥,∴sinx=2cosx,tanx=2.∴sinxcosx===(2)f(x)=·=sinxcosx+cos2x=sin2x+(1+cos2x)=sin(2x+)+∵0<x≤,∴<2x+≤.∴sin(2x+)≤1∴1≤f(x)≤.所以f(x)的值域為:【點睛】本題考查三角函數(shù)恒等變換,同角三角函數(shù)基本關系式,三角函數(shù)性質(zhì),熟記公式,準確計算是關鍵,是中檔題18、(1);.(2).【解析】
(1)根據(jù)平面向量數(shù)量積的坐標運算、三角恒等變換先求出函數(shù)的解析式即可由三角函數(shù)的性質(zhì)求出函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)對于形如的值域問題,要先求出的范圍,再根據(jù)正弦函數(shù)的性質(zhì)逐步求解即可.【詳解】(1)由已知可得,,,令,解之得,所以函數(shù)的單調(diào)遞減區(qū)間為(2)因為,當時,,此時,,所以函數(shù)的值域為.【點睛】本題主要考查平面向量數(shù)量積的坐標運算、三角恒等變換及三角函數(shù)的周期、單調(diào)區(qū)間、值域的求法,試題綜合性強,屬中等難度題.19、(I)證明見解析;(II)(i)證明見解析;(ii).【解析】
(I)通過計算,結合,證得數(shù)列是遞增數(shù)列.(II)(i)將轉(zhuǎn)化為,利用迭代法證得.(ii)由(i)得,從而,即.利用裂項求和法求得,結合(i)的結論求得,由此得到當時,取得最小值.【詳解】(I)由所以,因為,所以,即,所以,所以數(shù)列是遞增數(shù)列.(II)此時.(i)所以,有由(1)知是遞增數(shù)列,所以所以(ii)因為所以有.由由(i)知,所以所以所以當時,取得最小值.【點睛】本小題主要考查數(shù)列單調(diào)性的證明方法,考查裂項求和法,考查迭代法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.20、(1),(2)時,【解析】
(1)設,有題知,得到,再計算矩形的面積,解不等式即可.(2)首先將花壇的面積化簡為,再利用基本不等式的性質(zhì)即可求出面積的最小值.【詳解】(1)設,.因為四邊形為矩形,所以.即:,解得:.所以,.所以,,解得或.因為,所以或.所以的長度范圍是.(2)因為.當且僅當,即時取“”.所以當時,.【點睛】本題第
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度店長聘用合同特殊條款適用性分析
- 二零二五年度牛羊草料進口代理服務合同樣本2篇
- 二零二五年度出國留學學費支付及管理合同4篇
- 二零二五年度城市綠化打井工程監(jiān)理合同8篇
- 2025年度個人小型挖機租賃服務規(guī)范合同4篇
- 二零二五版嬰幼兒奶粉品牌授權及產(chǎn)品供應鏈管理合同4篇
- 2025年度個人二手車轉(zhuǎn)讓及二手車增值服務合同
- 二零二五年度木工材料供應鏈管理合同4篇
- 2025年度個人工程車租賃及道路救援服務合同2篇
- 2025年度個人車輛購置貸款延期還款合同4篇
- 回收二手機免責協(xié)議書模板
- (正式版)JC∕T 60023-2024 石膏條板應用技術規(guī)程
- 人教版高中生物學新舊教材知識差異盤點
- (權變)領導行為理論
- 2024屆上海市浦東新區(qū)高三二模英語卷
- 2024年智慧工地相關知識考試試題及答案
- YY/T 0681.2-2010無菌醫(yī)療器械包裝試驗方法第2部分:軟性屏障材料的密封強度
- GB/T 8005.2-2011鋁及鋁合金術語第2部分:化學分析
- 不動產(chǎn)登記實務培訓教程課件
- 不銹鋼制作合同范本(3篇)
- 2023年系統(tǒng)性硬化病診斷及診療指南
評論
0/150
提交評論