版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省汕尾陸豐市林啟恩紀(jì)念中學(xué)新高考數(shù)學(xué)倒計(jì)時(shí)模擬卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《周易》歷來(lái)被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對(duì)萬(wàn)事萬(wàn)物的深刻而又樸素的認(rèn)識(shí),是中華人文文化的基礎(chǔ),它反映出中國(guó)古代的二進(jìn)制計(jì)數(shù)的思想方法.我們用近代術(shù)語(yǔ)解釋為:把陽(yáng)爻“-”當(dāng)作數(shù)字“1”,把陰爻“--”當(dāng)作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號(hào)表示的二進(jìn)制數(shù)表示的十進(jìn)制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號(hào)“”表示的十進(jìn)制數(shù)是()A.18 B.17 C.16 D.152.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.3.在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.4.在中,角的對(duì)邊分別為,,若,,且,則的面積為()A. B. C. D.5.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.6.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件7.已知集合A={x|x<1},B={x|},則A. B.C. D.8.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.9.如圖,圓是邊長(zhǎng)為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.10.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.11.若復(fù)數(shù)滿足,其中為虛數(shù)單位,是的共軛復(fù)數(shù),則復(fù)數(shù)()A. B. C.4 D.512.若,則“”的一個(gè)充分不必要條件是A. B.C.且 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則關(guān)于的不等式的解集為_(kāi)______.14.?dāng)?shù)列滿足遞推公式,且,則___________.15.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.16.已知函數(shù),若函數(shù)有6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),為上的動(dòng)點(diǎn),點(diǎn)滿足,點(diǎn)的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,直線交曲線于兩點(diǎn),為中點(diǎn).(1)求曲線的直角坐標(biāo)方程和點(diǎn)的軌跡的極坐標(biāo)方程;(2)若,求的值.20.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.21.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.22.(10分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由題意可知“屯”卦符號(hào)“”表示二進(jìn)制數(shù)字010001,將其轉(zhuǎn)化為十進(jìn)制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號(hào)“”表示二進(jìn)制數(shù)字010001,轉(zhuǎn)化為十進(jìn)制數(shù)的計(jì)算為1×20+1×24=1.故選:B.【點(diǎn)睛】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識(shí)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.2、D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.3、B【解析】
根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B【點(diǎn)睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.4、C【解析】
由,可得,化簡(jiǎn)利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.5、D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).6、C【解析】
先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.7、A【解析】∵集合∴∵集合∴,故選A8、C【解析】
利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問(wèn)題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.9、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個(gè)題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問(wèn)題.通過(guò)向量的運(yùn)算,將問(wèn)題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問(wèn)題的一般方法.10、B【解析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點(diǎn)睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項(xiàng)公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問(wèn)題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過(guò)程.11、D【解析】
根據(jù)復(fù)數(shù)的四則運(yùn)算法則先求出復(fù)數(shù)z,再計(jì)算它的模長(zhǎng).【詳解】解:復(fù)數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的計(jì)算問(wèn)題,要求熟練掌握復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)長(zhǎng)度的計(jì)算公式,是基礎(chǔ)題.12、C【解析】,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故“且”是“”的充分不必要條件.選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
判斷的奇偶性和單調(diào)性,原不等式轉(zhuǎn)化為,運(yùn)用單調(diào)性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調(diào)遞增,,即,∴∴,即x>故答案為:【點(diǎn)睛】本題考查函數(shù)的奇偶性和單調(diào)性的運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.14、2020【解析】
可對(duì)左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題15、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.16、【解析】
由題意首先研究函數(shù)的性質(zhì),然后結(jié)合函數(shù)的性質(zhì)數(shù)形結(jié)合得到關(guān)于a的不等式,求解不等式即可確定實(shí)數(shù)a的取值范圍.【詳解】當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,很明顯,且存在唯一的實(shí)數(shù)滿足,當(dāng)時(shí),由對(duì)勾函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合復(fù)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且當(dāng)時(shí),,考查函數(shù)在區(qū)間上的性質(zhì),由二次函數(shù)的性質(zhì)可知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,函數(shù)有6個(gè)零點(diǎn),即方程有6個(gè)根,也就是有6個(gè)根,即與有6個(gè)不同交點(diǎn),注意到函數(shù)關(guān)于直線對(duì)稱,則函數(shù)關(guān)于直線對(duì)稱,繪制函數(shù)的圖像如圖所示,觀察可得:,即.綜上可得,實(shí)數(shù)的取值范圍是.故答案為.【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,復(fù)合函數(shù)的單調(diào)性,數(shù)形結(jié)合的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.①當(dāng)n為偶數(shù)時(shí),,所以隨n的增大而減小從而當(dāng)n為偶數(shù)時(shí),的最大值是.②當(dāng)n為奇數(shù)時(shí),,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對(duì)于任意的,不等式恒成立,只需,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查了累加法求數(shù)列通項(xiàng)公式的應(yīng)用,分類討論奇偶項(xiàng)的通項(xiàng)公式及求和方法,數(shù)學(xué)歸納法證明數(shù)列的應(yīng)用,數(shù)列的單調(diào)性及參數(shù)的取值范圍,屬于難題.18、(Ⅰ)(為參數(shù));(Ⅱ)【解析】
(Ⅰ)設(shè)點(diǎn),,則,代入化簡(jiǎn)得到答案.(Ⅱ)分別計(jì)算,的極坐標(biāo)方程為,,取代入計(jì)算得到答案.【詳解】(Ⅰ)設(shè)點(diǎn),,,故,故的參數(shù)方程為:(為參數(shù)).(Ⅱ),故,極坐標(biāo)方程為:;,故,極坐標(biāo)方程為:.,故,,故.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.19、(1),;(2)或【解析】
(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標(biāo)方程,再由,,可得點(diǎn)的軌跡的極坐標(biāo)方程;(2)將曲線極坐標(biāo)方程求,與直線極坐標(biāo)方程聯(lián)立,消去,得到關(guān)于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標(biāo)方程為,圓的圓心為,設(shè),所以,則由,即為點(diǎn)軌跡的極坐標(biāo)方程.(2)曲線的極坐標(biāo)方程為,將與曲線的極坐標(biāo)方程聯(lián)立得,,設(shè),所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點(diǎn)睛】此題考查參數(shù)方程與普通方程的互化,極坐標(biāo)方程與直角坐標(biāo)方程的互化,利用極坐標(biāo)求點(diǎn)的軌跡方程,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,屬于中檔題.20、(1)詳見(jiàn)解析(2)【解析】
(1)如圖,作,交于,連接.因?yàn)?,所以是的三等分點(diǎn),可得.因?yàn)?,,,所以,因?yàn)?,所以,因?yàn)?,所以,所以,因?yàn)?,所以,所以,因?yàn)槠矫妫矫?,所以平?又,平面,平面,所以平面.因?yàn)?,、平面,所以平面平面,所以平?(2)因?yàn)槭堑冗吶切?,,所?又因?yàn)?,,所以,所?又,平面,,所以平面.因?yàn)槠矫?,所以平面平?在平面內(nèi)作平面.以B點(diǎn)為坐標(biāo)原點(diǎn),分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,則,,,所以,,,.設(shè)為平面的法向量,則,即,令,可得.設(shè)為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.21、(1)極大值為;極小值為;(2)見(jiàn)解析【解析】
(1)對(duì)函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智慧停車場(chǎng)零星小工程合作框架協(xié)議4篇
- 二零二五版建筑工程合同索賠管理規(guī)范合同2篇
- 2025版虛擬現(xiàn)實(shí)游戲開(kāi)發(fā)合作contract合同4篇
- 二零二五年度教育培訓(xùn)機(jī)構(gòu)合作招生及分成合同3篇
- 2025年度航空物流運(yùn)輸服務(wù)合同模板4篇
- 2025年度煤矸石熱能利用項(xiàng)目合同4篇
- 二零二五年度精裝修二手房買賣定金合同樣本3篇
- 2025年度農(nóng)產(chǎn)品綠色認(rèn)證銷售合同4篇
- 二零二五年生物科技產(chǎn)品國(guó)內(nèi)總代理銷售合同范本2篇
- 2025年通勤車租賃合同城市通勤交通解決方案協(xié)議9篇
- 意識(shí)障礙患者的護(hù)理診斷及措施
- 2024版《53天天練單元?dú)w類復(fù)習(xí)》3年級(jí)語(yǔ)文下冊(cè)(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會(huì)盛典
- 215kWh工商業(yè)液冷儲(chǔ)能電池一體柜用戶手冊(cè)
- 場(chǎng)地平整施工組織設(shè)計(jì)-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
- 美容美發(fā)店火災(zāi)應(yīng)急預(yù)案
- 餐車移動(dòng)食材配送方案
- 項(xiàng)目工程師年終總結(jié)課件
- 一年級(jí)口算練習(xí)題大全(可直接打印A4)
- 電動(dòng)車棚消防應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論