2023-2024學年浙江省衢州市常山縣達標名校中考數學適應性模擬試題含解析_第1頁
2023-2024學年浙江省衢州市常山縣達標名校中考數學適應性模擬試題含解析_第2頁
2023-2024學年浙江省衢州市常山縣達標名校中考數學適應性模擬試題含解析_第3頁
2023-2024學年浙江省衢州市常山縣達標名校中考數學適應性模擬試題含解析_第4頁
2023-2024學年浙江省衢州市常山縣達標名校中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年浙江省衢州市常山縣達標名校中考數學適應性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.某班要推選學生參加學校的“詩詞達人”比賽,有7名學生報名參加班級選拔賽,他們的選拔賽成績各不相同,現取其中前3名參加學校比賽.小紅要判斷自己能否參加學校比賽,在知道自己成績的情況下,還需要知道這7名學生成績的()A.眾數 B.中位數 C.平均數 D.方差2.中國古代人民很早就在生產生活中發(fā)現了許多有趣的數學問題,其中《孫子算經》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設有輛車,則可列方程()A. B.C. D.3.|﹣3|的值是()A.3 B. C.﹣3 D.﹣4.如圖所示是8個完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.5.下列運算正確的是()A.=x5 B. C.·= D.3+26.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.7.如圖,小明要測量河內小島B到河邊公路l的距離,在A點測得,在C點測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.8.cos30°=()A. B. C. D.9.如圖所示的幾何體的俯視圖是()A. B. C. D.10.的相反數是()A. B.﹣ C.﹣ D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知函數y=x+2的圖象與函數y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.12.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.13.如圖,正方形OABC與正方形ODEF是位似圖形,點O為位似中心,位似比為2:3,點B、E在第一象限,若點A的坐標為(1,0),則點E的坐標是______.14.如圖,AB是⊙O的切線,B為切點,AC經過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.15.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。16.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.三、解答題(共8題,共72分)17.(8分)解不等式組:,并把解集在數軸上表示出來。18.(8分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.19.(8分)解分式方程:x+1x-1-20.(8分)如圖,已知點、在直線上,且,于點,且,以為直徑在的左側作半圓,于,且.若半圓上有一點,則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數;②當半圓與的邊相切時,求平移距離.21.(8分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。22.(10分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;23.(12分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.24.如圖,在邊長為1個單位長度的小正方形組成的12×12網格中建立平面直角坐標系,格點△ABC(頂點是網格線的交點)的坐標分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉90°得到△DEF,畫出△DEF;(2)以O為位似中心,將△ABC放大為原來的2倍,在網格內畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應點P1的坐標為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,只需知道中位數即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,故應知道中位數是多少.故選B.【點睛】本題考查了統(tǒng)計的有關知識,掌握平均數、中位數、眾數、方差的意義是解題的關鍵.2、A【解析】

根據每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總人數得出等式即可.【詳解】設有x輛車,則可列方程:

3(x-2)=2x+1.

故選:A.【點睛】此題主要考查了由實際問題抽象出一元一次方程,正確表示總人數是解題關鍵.3、A【解析】分析:根據絕對值的定義回答即可.詳解:負數的絕對值等于它的相反數,故選A.點睛:考查絕對值,非負數的絕對值等于它本身,負數的絕對值等于它的相反數.4、A【解析】分析:根據主視圖、左視圖、俯視圖是分別從物體正面、側面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點睛:本題考查了學生的思考能力和對幾何體三種視圖的空間想象能力.5、B【解析】

根據冪的運算法則及整式的加減運算即可判斷.【詳解】A.=x6,故錯誤;B.,正確;C.·=,故錯誤;D.3+2不能合并,故錯誤,故選B.【點睛】此題主要考查整式的加減及冪的運算,解題的關鍵是熟知其運算法則.6、B【解析】分析:根據軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.7、B【解析】

解:過點B作BE⊥AD于E.設BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.8、C【解析】

直接根據特殊角的銳角三角函數值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數點評:本題屬于基礎應用題,只需學生熟練掌握特殊角的銳角三角函數值,即可完成.9、D【解析】試題分析:根據俯視圖的作法即可得出結論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.10、B【解析】

一個數的相反數就是在這個數前面添上“﹣”號,由此即可求解.【詳解】解:的相反數是﹣.故選:B.【點睛】本題考查了相反數的意義,一個數的相反數就是在這個數前面添上“﹣”號:一個正數的相反數是負數,一個負數的相反數是正數,1的相反數是1.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】

連接OA.根據反比例函數的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標.設A(a,a+2),B(b,b+2),則C(-b,-b-2),根據S△OAB=2,得出a-b=2

①.根據S△OAC=2,得出-a-b=2

②,①與②聯立,求出a、b的值,即可求解.【詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設直線y=x+2與y軸交于點D,則D(0,2),設A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2

①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2

②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【點睛】本題考查了反比例函數與一次函數的交點問題,反比例函數的性質,反比例函數圖象上點的坐標特征,三角形的面積,待定系數法求函數的解析式等知識,綜合性較強,難度適中.根據反比例函數的對稱性得出OB=OC是解題的突破口.12、1【解析】

試題分析:如圖,延長CF交AB于點G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點D是BC中點,∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.13、(,)【解析】

由題意可得OA:OD=2:3,又由點A的坐標為(1,0),即可求得OD的長,又由正方形的性質,即可求得E點的坐標.【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為2:3,∴OA:OD=2:3,∵點A的坐標為(1,0),即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點的坐標為:(,).故答案為:(,).【點睛】此題考查了位似變換的性質與正方形的性質,注意理解位似變換與相似比的定義是解此題的關鍵.14、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.15、288°【解析】

母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.16、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】

此題主要考查了菱形的性質,勾股定理,關鍵是要熟記定理的內容并會應用.三、解答題(共8題,共72分)17、,解集在數軸上表示見解析【解析】試題分析:先解不等式組中的每一個不等式,得到不等式組的解集,再把不等式的解集表示在數軸上即可.試題解析:由①得:由②得:∴不等式組的解集為:解集在數軸上表示為:18、-5【解析】

根據分式的運算法則以及實數的運算法則即可求出答案.【詳解】當x=sin30°+2﹣1+時,∴x=++2=3,原式=÷==﹣5.【點睛】本題考查分式的運算法則,解題的關鍵是熟練運用分式的運算法則,本題屬于基礎題型.19、方程無解【解析】

找出分式方程的最簡公分母,去分母后轉化為整式方程,求出整式方程的解得到x的值,再代入最簡公分母進行檢驗即可.【詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【點睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗根.20、(1);(2)①;②【解析】

(1)由圖可知當點F與點D重合時,AF最大,根據勾股定理即可求出此時AF的長;(2)①連接EG、EH.根據的長為π可求得∠GEH=60°,可得△GEH是等邊三角形,根據等邊三角形的三個角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根據平角的定義即可求出∠A'GO的度數;②分C'A'與半圓相切和B'A'與半圓相切兩種情況進行討論,利用切線的性質、勾股定理、切斜長定理等知識進行解答即可得出答案.【詳解】解:(1)當點F與點D重合時,AF最大,AF最大=AD==,故答案為:;(2)①連接、.∵,∴.∵,∴是等邊三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②當切半圓于時,連接,則.∵,∴切半圓于點,∴.∵,∴,∴平移距離為.當切半圓于時,連接并延長于點,∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【點睛】本題主要考查了弧長公式、勾股定理、切線的性質,作出過切點的半徑構造出直角三角形是解決此題的關鍵.21、見解析【解析】

在ABC和EAD中已經有一條邊和一個角分別相等,根據平行的性質和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【點睛】本題主要考查了平行四邊形的基本性質和全等三角形的判定及性質,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、(1)2(2)當x=4時,y最小=88平方米【解析】(1)根據題意得方程解即可;(2)設苗圃園的面積為y,根據題意得到二次函數的解析式y(tǒng)=x(31-2x)=-2x2+31x,根據二次函數的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最?。?×(31-22)=88“點睛”此題考查了二次函數、一元二次不等式的實際應用問題,解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.23、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數法,列方程求二次函數解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,FG=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論