版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
西藏拉薩北京實(shí)驗(yàn)中學(xué)2025屆高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,分別為角的對(duì)邊,若的面積為,則的值為()A. B. C. D.2.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-23.已知角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊落在射線上,則()A. B. C. D.4.已知點(diǎn)和點(diǎn),是直線上的一點(diǎn),則的最小值是()A. B. C. D.5.將函數(shù)f(x)=sin(ωx+)(ω>0)的圖象向左平移個(gè)單位,所得到的函數(shù)圖象關(guān)于y軸對(duì)稱,則函數(shù)f(x)的最小正周期不可能是()A. B. C. D.6.已知是函數(shù)的兩個(gè)零點(diǎn),則()A. B.C. D.7.已知兩條直線m,n,兩個(gè)平面α,β,給出下面四個(gè)命題:①m//n,m⊥α?n⊥α;②α//β,m?α,n?β?m//n;③m//n,m//α?n//α;④α//β,m//n,m⊥α?n⊥β其中正確命題的序號(hào)是()A.①④B.②④C.①③D.②③8.若一個(gè)人下半身長(zhǎng)(肚臍至足底)與全身長(zhǎng)的比近似為5-12(5-12≈0.618A.身材完美,無(wú)需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時(shí)穿戴同樣高度的增高鞋與帽子9.把函數(shù),圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,所得圖象對(duì)應(yīng)的函數(shù)為()A. B.C. D.10.設(shè),滿足約束條件,則目標(biāo)函數(shù)的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則______.12.若直線與圓相切,則________.13.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_(kāi)____.14.函數(shù)的反函數(shù)為_(kāi)___________.15.若復(fù)數(shù)(為虛數(shù)單位),則的共軛復(fù)數(shù)________16.已知函數(shù),對(duì)于上的任意,,有如下條件:①;②;③;④.其中能使恒成立的條件序號(hào)是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.某學(xué)校高一、高二、高三的三個(gè)年級(jí)學(xué)生人數(shù)如下表
高三
高二
高一
女生
133
153
z
男生
333
453
633
按年級(jí)分層抽樣的方法評(píng)選優(yōu)秀學(xué)生53人,其中高三有13人.(1)求z的值;(2)用分層抽樣的方法在高一中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1名女生的概率;(3)用隨機(jī)抽樣的方法從高二女生中抽取2人,經(jīng)檢測(cè)她們的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把這2人的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)3.5的概率.18.如圖,已知四棱錐,底面是邊長(zhǎng)為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點(diǎn),為線段的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積19.已知函數(shù)的最小正周期是.(1)求ω的值;(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.20.已知等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.設(shè)向量,,其中.(1)若,求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】試題分析:由已知條件及三角形面積計(jì)算公式得由余弦定理得考點(diǎn):考查三角形面積計(jì)算公式及余弦定理.2、B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.3、D【解析】
在的終邊上取點(diǎn),然后根據(jù)三角函數(shù)的定義可求得答案.【詳解】在的終邊上取點(diǎn),則,根據(jù)三角形函數(shù)的定義得.故選:D【點(diǎn)睛】本題考查了利用角的終邊上的點(diǎn)的坐標(biāo)求三角函數(shù)值,屬于基礎(chǔ)題.4、D【解析】
求出A關(guān)于直線l:的對(duì)稱點(diǎn)為C,則BC即為所求【詳解】如下圖所示:點(diǎn),關(guān)于直線l:的對(duì)稱點(diǎn)為C(0,2),連接BC,此時(shí)的最小值為故選D.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是兩點(diǎn)間距離公式的應(yīng)用,難度不大,屬于中檔題.5、D【解析】
利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對(duì)稱性和周期性,求得函數(shù)的最小正周期為,由此得出結(jié)論.【詳解】解:將函數(shù)的圖象向左平移個(gè)單位,可得的圖象,根據(jù)所得到的函數(shù)圖象關(guān)于軸對(duì)稱,可得,即,.函數(shù)的最小正周期為,則函數(shù)的最小正周期不可能是,故選.【點(diǎn)睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,對(duì)稱性和周期性,屬于基礎(chǔ)題.6、A【解析】
在同一直角坐標(biāo)系中作出與的圖象,設(shè)兩函數(shù)圖象的交點(diǎn),依題意可得,利用對(duì)數(shù)的運(yùn)算性質(zhì)結(jié)合圖象即可得答案.【詳解】解:,在同一直角坐標(biāo)系中作出與的圖象,
設(shè)兩函數(shù)圖象的交點(diǎn),
則,即,
又,
所以,,即,
所以①;
又,故,即②,由①②得:,
故選:A.【點(diǎn)睛】本題考查根的存在性及根的個(gè)數(shù)判斷,依題意可得是關(guān)鍵,考查作圖能力與運(yùn)算求解能力,屬于難題.7、A【解析】依據(jù)線面垂直的判定定理可知命題①是正確的;對(duì)于命題②,直線m,n還有可能是異面,因此不正確;對(duì)于命題③,還有可能直線n?α,因此③命題不正確;依據(jù)線面垂直的判定定理可知命題④是正確的,故應(yīng)選答案A.8、C【解析】
對(duì)每一個(gè)選項(xiàng)逐一分析研究得解.【詳解】A.103103+72B.假設(shè)她需要戴上高度為x厘米的帽子,則103175C.假設(shè)她可以穿一雙合適高度為y的增高鞋,則103+D.假設(shè)同時(shí)穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點(diǎn)睛】本題主要考查學(xué)生對(duì)新定義的理解和應(yīng)用,屬于基礎(chǔ)題.9、C【解析】
利用二倍角的余弦公式以及輔助角公式將函數(shù)化為的形式,然后再利用三角函數(shù)的圖像變換即可求解.【詳解】函數(shù),函數(shù)圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長(zhǎng)度可得,在將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,可得.故選:C【點(diǎn)睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的圖像平移伸縮變換,需熟記公式,屬于基礎(chǔ)題.10、A【解析】如圖,過(guò)時(shí),取最小值,為。故選A。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)題意令f(x)=,求出x的值,即可得出f﹣1()的值.【詳解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案為:﹣.【點(diǎn)睛】本題考查了反函數(shù)以及反正弦函數(shù)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.12、1【解析】
利用圓心到直線的距離等于半徑列方程,解方程求得的值.【詳解】由于直線和圓相切,所以圓心到直線的距離,即,由于,所以.故答案為:【點(diǎn)睛】本小題主要考查直線和圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,屬于基礎(chǔ)題.13、【解析】
由已知求得母線長(zhǎng),代入圓錐側(cè)面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長(zhǎng)l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【點(diǎn)睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.14、【解析】
由原函數(shù)的解析式解出自變量x的解析式,再把x和y交換位置,即可得到結(jié)果.【詳解】解:記∴故反函數(shù)為:【點(diǎn)睛】本題考查函數(shù)與反函數(shù)的定義,求反函數(shù)的方法和步驟,注意反函數(shù)的定義域是原函數(shù)的值域.15、【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由共軛復(fù)數(shù)的概念得答案.【詳解】由z=i(2﹣i)=1+2i,得.故答案為1﹣2i.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查共軛復(fù)數(shù)的基本概念,是基礎(chǔ)題.16、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函數(shù),∴g(x)圖象關(guān)于y軸對(duì)稱,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函數(shù),在[﹣,0)是減函數(shù),故③x1>|x2|;④時(shí),g(x1)>g(x2)恒成立,故答案為:③④.點(diǎn)睛:此題考查的是函數(shù)的單調(diào)性的應(yīng)用;已知表達(dá)式,根據(jù)表達(dá)式判斷函數(shù)的單調(diào)性,和奇偶性,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反,根據(jù)單調(diào)性的定義可知,增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越大函數(shù)值越小。三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)433(2)(3)【解析】
(1)設(shè)該???cè)藬?shù)為n人,由題意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)設(shè)所抽樣本中有m個(gè)女生,因?yàn)橛梅謱映闃拥姆椒ㄔ诟咭慌谐槿∫粋€(gè)容量為5的樣本,所以,解得m=2也就是抽取了2名女生,3名男生,分別記作S1,S2;B1,B2,B3,則從中任取2人的所有基本事件為(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13個(gè),其中至少有1名女生的基本事件有7個(gè):(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以從中任取2人,至少有1名女生的概率為.(3)樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對(duì)值不超過(guò)3.5的數(shù)為1.4,2.6,1.2,2.7,1.3,1.3這6個(gè)數(shù),總的個(gè)數(shù)為2,所以該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過(guò)3.5的概率為.18、(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)【解析】
(Ⅰ)連接,交于點(diǎn);根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長(zhǎng)度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.【詳解】(Ⅰ)證明:連接,交于點(diǎn)四邊形為菱形為中點(diǎn)又為中點(diǎn)平面,平面平面(Ⅱ)為正三角形,為中點(diǎn)平面平面,平面平面,平面平面,又平面(Ⅲ)為中點(diǎn)又,,由(Ⅱ)知,【點(diǎn)睛】本題考查立體幾何中線面平行、線線垂直關(guān)系的證明、三棱錐體積的求解問(wèn)題;涉及到線面平行判定定理、面面垂直性質(zhì)定理和判定定理的應(yīng)用、體積橋的方式求解三棱錐體積等知識(shí),屬于??碱}型.19、(1)(2)函數(shù)f(x)的最大值是2+,此時(shí)x的集合為{x|x=+,k∈Z}.【解析】試題分析析:本題是函數(shù)性質(zhì)問(wèn)題,可借助正弦函數(shù)的圖象與性質(zhì)去研究,根據(jù)周期公式可以求出,當(dāng)函數(shù)的解析式確定后,可以令,,根據(jù)正弦函數(shù)的最大值何時(shí)取得,可以計(jì)算出為何值時(shí),函數(shù)值取得的最大值,進(jìn)而求出的值的集合.試題解析:(1)∵f(x)=sin(+2(x∈R,ω>0)的最小正周期是,∴,所以ω=2.(2)由(1)知,f(x)=sin+2.當(dāng)4x+=+2kπ(k∈Z),即x=+(k∈Z)時(shí),sin取得最大值1,所以函數(shù)f(x)的最大值是2+,此時(shí)x的集合為{x|x=+,(k∈Z)}.【點(diǎn)睛】函數(shù)的最小正周期為,根據(jù)公式求出,頁(yè)有關(guān)函數(shù)的性質(zhì)可按照復(fù)合函數(shù)的思想去求,可以看成與.復(fù)合而成的復(fù)合函數(shù),譬如本題求函數(shù)的最大值,可以令,求出值,同時(shí)求出函數(shù)的最大值2.20、(1)(2)【解析】
(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出公差,即可得出通項(xiàng)公式;(2)根據(jù)前項(xiàng)和公式,即
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年連云港客運(yùn)從業(yè)資格證考試題
- 2025屆高考政治一輪復(fù)習(xí)專練:民事權(quán)利與義務(wù)(含解析)
- 人教部編版二年級(jí)語(yǔ)文上冊(cè)識(shí)字4《田家四季歌》精美課件
- 吉首大學(xué)《民族器樂(lè)合奏》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉首大學(xué)《法學(xué)概論A》2021-2022學(xué)年期末試卷
- 《機(jī)械設(shè)計(jì)》試題2
- 吉林藝術(shù)學(xué)院《造型基礎(chǔ)1》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《數(shù)字動(dòng)畫導(dǎo)論》2021-2022學(xué)年第一學(xué)期期末試卷
- 餐飲合作分租協(xié)議書(shū)范本范本
- 2024年供水檢漏服務(wù)合同范本
- 物業(yè)保潔員勞務(wù)合同2篇
- 國(guó)有土地上房屋裝修備案申請(qǐng)表
- 二年級(jí)上冊(cè)音樂(lè)課件《小紅帽》(人音版)
- 2023年中級(jí)經(jīng)濟(jì)師考試真題及答案
- 重慶建筑工程資料全套表格年
- GB/T 23221-2008烤煙栽培技術(shù)規(guī)程
- GB/T 18284-2000快速響應(yīng)矩陣碼
- GB/T 16900-2008圖形符號(hào)表示規(guī)則總則
- 遼寧省遼南協(xié)作校2022-2023學(xué)年高二上學(xué)期期末考試語(yǔ)文答案 Word版含解析
- 中職英語(yǔ)統(tǒng)考復(fù)習(xí)講課教案
- DB11-T 1832.10-2022建筑工程施工工藝規(guī)程 第10部分:裝飾裝修工程
評(píng)論
0/150
提交評(píng)論