版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆溫州樂(lè)成寄宿中學(xué)數(shù)學(xué)高一下期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.一條光線從點(diǎn)射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或 C.或 D.或2.已知函數(shù),此函數(shù)的圖象如圖所示,則點(diǎn)的坐標(biāo)是()A. B. C. D.3.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問(wèn)題:“今有女子善織,日自倍,五日織五尺,問(wèn)日織幾何?”這個(gè)問(wèn)題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問(wèn)這位女子每天分別織布多少?根據(jù)上述問(wèn)題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.14.設(shè)等比數(shù)列的前項(xiàng)和為,且,則()A.255 B.375 C.250 D.2005.在中,點(diǎn)是邊上的靠近的三等分點(diǎn),則()A. B.C. D.6.圓的半徑為()A.1 B.2 C.3 D.47.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,則()A. B. C. D.8.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或39.設(shè)和分別表示函數(shù)的最大值和最小值,則等于()A. B. C. D.10.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函數(shù)g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.9二、填空題:本大題共6小題,每小題5分,共30分。11._________________;12.某中學(xué)為了了解全校學(xué)生的閱讀情況,在全校采用隨機(jī)抽樣的方法抽取一個(gè)樣本進(jìn)行問(wèn)卷調(diào)查,并將他們?cè)谝粋€(gè)月內(nèi)去圖書館的次數(shù)進(jìn)行了統(tǒng)計(jì),將學(xué)生去圖書館的次數(shù)分為5組:制作了如圖所示的頻率分布表,則抽樣總?cè)藬?shù)為_(kāi)______.13.已知sin=,則cos=________.14.如圖,在三棱錐中,它的每個(gè)面都是全等的正三角形,是棱上的動(dòng)點(diǎn),設(shè),分別記與,所成角為,,則的取值范圍為_(kāi)_________.15.已知數(shù)列的通項(xiàng)公式,則____________.16.方程的解為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.等差數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.18.某學(xué)校為了了解高三文科學(xué)生第一學(xué)期數(shù)學(xué)的復(fù)習(xí)效果.從高三第一學(xué)期期末考試成績(jī)中隨機(jī)抽取50名文科考生的數(shù)學(xué)成績(jī),分成6組制成如圖所示的頻率分布直方圖.(1)試?yán)么祟l率分布直方圖求的值及這50名同學(xué)數(shù)學(xué)成績(jī)的平均數(shù)的估計(jì)值;(2)該學(xué)校為制定下階段的復(fù)習(xí)計(jì)劃,從被抽取的成績(jī)?cè)诘耐瑢W(xué)中選出3位作為代表進(jìn)行座談,若已知被抽取的成績(jī)?cè)诘耐瑢W(xué)中男女比例為,求至少有一名女生參加座談的概率.19.設(shè),若存在,使得,且對(duì)任意,均有(即是一個(gè)公差為的等差數(shù)列),則稱數(shù)列是一個(gè)長(zhǎng)度為的“弱等差數(shù)列”.(1)判斷下列數(shù)列是否為“弱等差數(shù)列”,并說(shuō)明理由.①1,3,5,7,9,11;②2,,,,.(2)證明:若,則數(shù)列為“弱等差數(shù)列”.(3)對(duì)任意給定的正整數(shù),若,是否總存在正整數(shù),使得等比數(shù)列:是一個(gè)長(zhǎng)度為的“弱等差數(shù)列”?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由20.已知(且)是R上的奇函數(shù),且.(1)求的解析式;(2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個(gè)解,求m的取值集合;(3)設(shè),記,是否存在正整數(shù)n,使不得式對(duì)一切均成立?若存在,求出所有n的值,若不存在,說(shuō)明理由.21.如圖1,已知菱形的對(duì)角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
由題意可知:點(diǎn)在反射光線上.設(shè)反射光線所在的直線方程為:,利用直線與圓的相切的性質(zhì)即可得出.【詳解】由題意可知:點(diǎn)在反射光線上.設(shè)反射光線所在的直線方程為:,即.由相切的性質(zhì)可得:,化為:,解得或.故選.【點(diǎn)睛】本題考查了直線與圓相切的性質(zhì)、點(diǎn)到直線的距離公式、光線反射的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.2、B【解析】
根據(jù)確定的兩個(gè)相鄰零點(diǎn)的值可以求出最小正周期,進(jìn)而利用正弦型最小正周期公式求出的值,最后把其中的一個(gè)零點(diǎn)代入函數(shù)的解析式中,求出的值即可.【詳解】設(shè)函數(shù)的最小正周期為,因此有,當(dāng)時(shí),,因此的坐標(biāo)為:.故選:B【點(diǎn)睛】本題考查了通過(guò)三角函數(shù)的圖象求參數(shù)問(wèn)題,屬于基礎(chǔ)題.3、B【解析】
將問(wèn)題轉(zhuǎn)化為等比數(shù)列問(wèn)題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問(wèn)題.【詳解】根據(jù)實(shí)際問(wèn)題可以轉(zhuǎn)化為等比數(shù)列問(wèn)題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問(wèn)題很有幫助.4、A【解析】
由等比數(shù)列的性質(zhì),仍是等比數(shù)列,先由是等比數(shù)列求出,再由是等比數(shù)列,可得.【詳解】由題得,成等比數(shù)列,則有,,解得,同理有,,解得.故選:A【點(diǎn)睛】本題考查等比數(shù)列前n項(xiàng)和的性質(zhì),這道題也可以先由求出數(shù)列的首項(xiàng)和公比q,再由前n項(xiàng)和公式直接得。5、A【解析】
將題中所體現(xiàn)的圖形畫出,可以很直觀的判斷向量的關(guān)系.【詳解】如圖有向量運(yùn)算可以知道:,選擇A【點(diǎn)睛】考查平面向量基本定理,利用好兩向量加法的計(jì)算原則:首尾相連,首尾相接.6、A【解析】
將圓的一般方程化為標(biāo)準(zhǔn)方程,確定所求.【詳解】因?yàn)閳A,所以,所以,故選A.【點(diǎn)睛】本題考查圓的標(biāo)準(zhǔn)方程與一般方程互化,圓的標(biāo)準(zhǔn)方程通過(guò)展開(kāi)化為一般方程,圓的一般方程通過(guò)配方化為標(biāo)準(zhǔn)方程,屬于簡(jiǎn)單題.7、B【解析】
利用正弦定理邊化角,結(jié)合和差公式以及誘導(dǎo)公式,即可得到本題答案.【詳解】因?yàn)?,所以,,,,?故選:B.【點(diǎn)睛】本題主要考查利用正弦定理邊角轉(zhuǎn)化求角,考查計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】
直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因?yàn)橹本€kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點(diǎn)睛】本題主要考查直線與直線垂直的充要條件,屬于基礎(chǔ)題.對(duì)直線位置關(guān)系的考查是熱點(diǎn)命題方向之一,這類問(wèn)題以簡(jiǎn)單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1)l1||l2?k19、C【解析】
根據(jù)余弦函數(shù)的值域,確定出的最大值和最小值,即可計(jì)算出的值.【詳解】因?yàn)榈闹涤驗(yàn)?,所以的最大值,所以的最小值,所?故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的最值問(wèn)題,難度較易.求解形如的函數(shù)的值域,注意借助余弦函數(shù)的有界性進(jìn)行分析.10、B【解析】
根據(jù)變換T(m,n)可生成函數(shù)g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【詳解】由題意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因?yàn)閥=1x+x-2在x∈[2,10]上單調(diào)遞減且為正值,y=10-x在x∈[2,10]上單調(diào)遞減且為正值,所以g(x)=10-x(【點(diǎn)睛】本題主要考查了函數(shù)的單調(diào)性,利用單調(diào)性求函數(shù)的最大值,涉及創(chuàng)設(shè)新情景及函數(shù)式的變形,屬于難題二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
利用誘導(dǎo)公式化簡(jiǎn)即可得出答案【詳解】【點(diǎn)睛】本題考查誘導(dǎo)公式,屬于基礎(chǔ)題.12、20【解析】
總體人數(shù)占的概率是1,也可以理解成每個(gè)人在整體占的比重一樣,所以三組的頻率為:,共有14人,即14人占了整體的0.7,那么整體共有人?!驹斀狻壳叭M,即三組的頻率為:,,解得:【點(diǎn)睛】此題考查概率,通過(guò)部分占總體的概率即可計(jì)算出總體的樣本值,屬于簡(jiǎn)單題目。13、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案為.14、【解析】
作交于,連接,可得是與所成的角根據(jù)等腰三角形的性質(zhì),作交于,同理可得,根據(jù),的關(guān)系即可得解.【詳解】解:作交于,連接,因?yàn)槿忮F中,它的每個(gè)面都是全等的正三角形,為正三角形,,,是與所成的角,根據(jù)等腰三角形的性質(zhì).作交于,同理可得,則,∵,∴,得.故答案為:【點(diǎn)睛】本題考查異面直線所成的角,屬于中檔題.15、【解析】
將代入即可求解【詳解】令,可得.故答案為:【點(diǎn)睛】本題考查求數(shù)列的項(xiàng),是基礎(chǔ)題16、或【解析】
由指數(shù)函數(shù)的性質(zhì)得,由此能求出結(jié)果.【詳解】方程,,或,解得或.故答案為或.【點(diǎn)睛】本題考查指數(shù)方程的解的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)的性質(zhì)的合理運(yùn)用.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)等差數(shù)列公式得到方程組,計(jì)算得到答案.(2)先求出,再利用裂項(xiàng)求和求得.【詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項(xiàng)和.【點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)公式,裂項(xiàng)求和,意在考查學(xué)生對(duì)于數(shù)列公式的靈活運(yùn)用及計(jì)算能力.18、(1);平均數(shù)的估計(jì)值(2)【解析】
(1)根據(jù)各小矩形面積和為1可求得的值;由頻率分布直方圖,結(jié)合平均數(shù)的求法即可求解.(2)根據(jù)頻率分布直方圖先求得成績(jī)?cè)诘耐瑢W(xué)人數(shù),結(jié)合分層抽樣可得男生4人,女生2人,設(shè)男生分別為;女生分別為,利用列舉法可得抽取3人的所有情況,進(jìn)而得至少有一名女生的情況,即可由古典概型概率公式求解.【詳解】(1)由題,解得,由頻率分布直方圖,得這50名同學(xué)數(shù)學(xué)成績(jī)的平均數(shù)的估計(jì)值為:(2)由頻率分布直方圖知,成績(jī)?cè)诘耐瑢W(xué)有人,由比例可知男生4人,女生2人,記男生分別為;女生分別為,則從6名同學(xué)中選出3人的所有可能如下:共20種,其中不含女生的有4種,設(shè)至少有一名女生參加座談為事件,則至少有一名女生參加座談的概率.【點(diǎn)睛】本題考查了頻率分布直方圖的性質(zhì)及平均數(shù)求法,分層抽樣及各組人數(shù)的確定方法,列舉法求古典概型的概率,屬于基礎(chǔ)題.19、(1)①是,②不是,理由見(jiàn)解析(2)證明見(jiàn)解析(3)存在,證明見(jiàn)解析【解析】
(1)①舉出符合條件的具體例子即可;②反證法推出矛盾;
(2)根據(jù)題意找出符合條件的為等差數(shù)列即可;
(3)首先,根據(jù),將公差表示出來(lái),計(jì)算任意相鄰兩項(xiàng)的差值可以發(fā)現(xiàn)不大于.那么用裂項(xiàng)相消的方法表示出,結(jié)合相鄰兩項(xiàng)差值不大于可以得到,接下來(lái),只需證明存在滿足條件的即可.用和公差表示出,并展開(kāi)可以發(fā)現(xiàn)多項(xiàng)式的最高次項(xiàng)為,而已知,因此在足夠大時(shí)顯然成立.結(jié)論得證.【詳解】解:(1)數(shù)列①:1,3,5,7,9,11是“弱等差數(shù)列”
取分別為1,3,5,7,9,11,13即可;
數(shù)列②2,,,,不是“弱等差數(shù)列”
否則,若數(shù)列②為“弱等差數(shù)列”,則存在實(shí)數(shù)構(gòu)成等差數(shù)列,設(shè)公差為,
,
,又與矛盾,所以數(shù)列②2,,,,不是“弱等差數(shù)列”;
(2)證明:設(shè),
令,取,則,
則,
,
,
就有,命題成立.
故數(shù)列為“弱等差數(shù)列”;(3)若存在這樣的正整數(shù),使得
成立.
因?yàn)?,?/p>
則,其中待定.
從而,
又,∴當(dāng)時(shí),總成立.
如果取適當(dāng)?shù)?,使得,又?/p>
所以,有
,
為使得,需要,
上式左側(cè)展開(kāi)為關(guān)于的多項(xiàng)式,最高次項(xiàng)為,其次數(shù)為,
故,對(duì)于任意給定正整數(shù),當(dāng)充分大時(shí),上述不等式總成立,即總存在滿足條件的正整數(shù),使得等比數(shù)列:是一個(gè)長(zhǎng)度為的“弱等差數(shù)列”.【點(diǎn)睛】本題要求學(xué)生能夠從已知分析出“弱等差數(shù)列”要想成立所應(yīng)該具備的要求,進(jìn)而進(jìn)行推理,轉(zhuǎn)化,最后進(jìn)行驗(yàn)證,本題難度相當(dāng)大.20、(1);(2)m的取值集合或}(3)存在,【解析】
(1)利用奇函數(shù)的性質(zhì)得到關(guān)于實(shí)數(shù)k的方程,解方程即可,注意驗(yàn)證所得的結(jié)果;(2)結(jié)合函數(shù)的單調(diào)性和函數(shù)的奇偶性脫去f的符號(hào)即可;(3)可得,即可得:即可.【詳解】(1)由奇函數(shù)的性質(zhì)可得:,解方程可得:.此時(shí),滿足,即為奇函數(shù).的解析式為:;(2)函數(shù)的解析式為:,結(jié)合指數(shù)函數(shù)的性質(zhì)可得:在區(qū)間內(nèi)只有一個(gè)解.即:在區(qū)間內(nèi)只有一個(gè)解.(i)當(dāng)時(shí),,符合題意.(ii)當(dāng)時(shí),只需且時(shí),,此時(shí),符合題意綜上,m的取值集合或}(3)函數(shù)為奇函數(shù)關(guān)于對(duì)稱又當(dāng)且僅當(dāng)時(shí)等號(hào)成立所以存在正整數(shù)n,使不得式對(duì)一切均成立.【點(diǎn)睛】本題考查了復(fù)合型指數(shù)函數(shù)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于難題.21、(Ⅰ)見(jiàn)證明;(Ⅱ)【解析】
(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說(shuō)明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年購(gòu)銷合同:某鋼鐵企業(yè)向供應(yīng)商訂購(gòu)0萬(wàn)噸原材料2篇
- 二零二五年度高鐵站房PC構(gòu)件預(yù)制及吊裝工程合同2篇
- 二零二五年度物業(yè)管理顧問(wèn)合同(含交通樞紐管理)2篇
- 二零二五版貨車司機(jī)意外傷害賠償合同范本3篇
- 二零二五年度綠色環(huán)保型二手房按揭交易合同模板3篇
- 二零二五食堂承包合同(大路食堂運(yùn)營(yíng)管理)3篇
- 二零二五版二手房買賣與家具選購(gòu)代理合同3篇
- 稅務(wù)局2025年度企業(yè)社會(huì)責(zé)任報(bào)告編制合同
- 二零二五年度智慧社區(qū)家居安裝合同規(guī)范3篇
- 二零二五年度蟲(chóng)草科研合作與技術(shù)轉(zhuǎn)移合同范本3篇
- 居家養(yǎng)老護(hù)理人員培訓(xùn)方案
- 江蘇省無(wú)錫市2024年中考語(yǔ)文試卷【附答案】
- 管理者的九大財(cái)務(wù)思維
- 四年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題練習(xí)100題附答案
- 2024年度中國(guó)電建集團(tuán)北京勘測(cè)設(shè)計(jì)研究院限公司校園招聘高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 有關(guān)企業(yè)會(huì)計(jì)人員個(gè)人工作總結(jié)
- 人教版高中數(shù)學(xué)必修二《第十章 概率》單元同步練習(xí)及答案
- 干部人事檔案專項(xiàng)審核工作情況報(bào)告(8篇)
- 智慧校園信息化建設(shè)項(xiàng)目組織人員安排方案
- 多旋翼無(wú)人機(jī)駕駛員執(zhí)照(CAAC)備考試題庫(kù)大全-下部分
- 2024年青海一級(jí)健康管理師高頻核心題庫(kù)300題(含答案詳解)
評(píng)論
0/150
提交評(píng)論