拉薩市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
拉薩市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
拉薩市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
拉薩市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
拉薩市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

拉薩市重點中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓C的半徑為2,在圓內(nèi)隨機取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.2.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出的值等于()A.-3 B.-10 C.0 D.-23.延長正方形的邊至,使得.若動點從點出發(fā),沿正方形的邊按逆時針方向運動一周回到點,若,下列判斷正確的是()A.滿足的點必為的中點B.滿足的點有且只有一個C.的最小值不存在D.的最大值為4.在長方體中,,,則異面直線與所成角的余弦值為()A. B.C. D.5.已知數(shù)列滿足:,,則該數(shù)列中滿足的項共有()項A. B. C. D.6.已知,,,則()A. B. C. D.7.已知直線l1:ax+2y+8=0與l2:x+(a-1)y+a2-1=0平行,則實數(shù)a的取值是()A.-1或2 B.-1 C.0或1 D.28.若一個人下半身長(肚臍至足底)與全身長的比近似為5-12(5-12≈0.618A.身材完美,無需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時穿戴同樣高度的增高鞋與帽子9.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營,怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營所在位置為,若將軍從山腳下的點處出發(fā),河岸線所在直線方程為,則“將軍飲馬”的最短總路程為()A.4 B.5 C. D.10.半徑為,中心角為的弧長為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中,若,,,則的面積______.12.設(shè),,為三條不同的直線,,為兩個不同的平面,下列命題中正確的是______.(1)若,,,則;(2)若,,,則;(3)若,,,,則;(4)若,,,則.13.382與1337的最大公約數(shù)是__________.14.函數(shù)在的值域是______________.15.已知,則的取值范圍是_______;16.空間一點到坐標(biāo)原點的距離是_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.18.已知三棱錐的體積為1.在側(cè)棱上取一點,使,然后在上取一點,使,繼續(xù)在上取一點,使,……按上述步驟,依次得到點,記三棱錐的體積依次構(gòu)成數(shù)列,數(shù)列的前項和.(1)求數(shù)列和的通項公式;(2)記,為數(shù)列的前項和,若不等式對一切恒成立,求實數(shù)的取值范圍.19.已知圓C的方程是(x-1)2+(y-1)2=4,直線l的方程為y=x+m,求當(dāng)m為何值時,(1)直線平分圓;(2)直線與圓相切.20.設(shè)O為坐標(biāo)原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.(1)求點P的軌跡方程;(2)設(shè)點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.21.設(shè)數(shù)列的前項和.已知.(1)求數(shù)列的通項公式;(2)是否對一切正整數(shù),有?說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當(dāng)時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.2、A【解析】

第一次循環(huán),;第二次循環(huán),;第三次循環(huán),,當(dāng)時,不成立,循環(huán)結(jié)束,此時,故選A.3、D【解析】試題分析:設(shè)正方形的邊長為1,建立如圖所示直角坐標(biāo)系,則的坐標(biāo)為,則設(shè),由得,所以,當(dāng)在線段上時,,此時,此時,所以;當(dāng)在線段上時,,此時,此時,所以;當(dāng)在線段上時,,此時,此時,所以;當(dāng)在線段上時,,此時,此時,所以;由以上討論可知,當(dāng)時,可為的中點,也可以是點,所以A錯;使的點有兩個,分別為點與中點,所以B錯,當(dāng)運動到點時,有最小值,故C錯,當(dāng)運動到點時,有最大值,所以D正確,故選D.考點:向量的坐標(biāo)運算.【名師點睛】本題考查平面向量線性運算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標(biāo)化是聯(lián)系圖形與代數(shù)運算的渠道,通過構(gòu)建直角坐標(biāo)系,使得向量運算完全代數(shù)化,通過加、減、數(shù)乘的運算法則,實現(xiàn)了數(shù)形的緊密結(jié)合,同時將參數(shù)的取值范圍問題轉(zhuǎn)化為求目標(biāo)函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標(biāo)相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應(yīng)用.4、C【解析】

畫出長方體,將平移至,則,則即為異面直線與所成角,由余弦定理即可求解.【詳解】根據(jù)題意,畫出長方體如下圖所示:將平移至,則即為異面直線與所成角,,由余弦定理可得故選:C【點睛】本題考查了長方體中異面直線的夾角求法,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.5、C【解析】

利用累加法求出數(shù)列的通項公式,然后解不等式,得出符合條件的正整數(shù)的個數(shù),即可得出結(jié)論.【詳解】,,,解不等式,即,即,,則或.故選:C.【點睛】本題考查了數(shù)列不等式的求解,同時也涉及了利用累加法求數(shù)列通項,解題的關(guān)鍵就是求出數(shù)列的通項,考查運算求解能力,屬于中等題.6、C【解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可求解.【詳解】為減函數(shù),,為增函數(shù),,為增函數(shù),,所以,故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較指數(shù)式、對數(shù)式的大小,屬于基礎(chǔ)題.7、A【解析】

【詳解】,選A.【點睛】本題考查由兩直線平行求參數(shù).8、C【解析】

對每一個選項逐一分析研究得解.【詳解】A.103103+72B.假設(shè)她需要戴上高度為x厘米的帽子,則103175C.假設(shè)她可以穿一雙合適高度為y的增高鞋,則103+D.假設(shè)同時穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點睛】本題主要考查學(xué)生對新定義的理解和應(yīng)用,屬于基礎(chǔ)題.9、C【解析】

求出點A關(guān)于直線的對稱點,再求解該對稱點與B點的距離,即為所求.【詳解】根據(jù)題意,作圖如下:因為點,設(shè)其關(guān)于直線的對稱點為故可得,解得,即故“將軍飲馬”的最短總路程為.故選:C.【點睛】本題考查點關(guān)于直線的對稱點的坐標(biāo)的求解,以及兩點之間的距離公式,屬基礎(chǔ)題.10、D【解析】

根據(jù)弧長公式,即可求得結(jié)果.【詳解】,.故選D.【點睛】本題考查了弧長公式,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用三角形的面積公式可求出的面積的值.【詳解】由三角形的面積公式可得.故答案為:.【點睛】本題考查三角形面積的計算,熟練利用三角形的面積公式是計算的關(guān)鍵,考查計算能力,屬于基礎(chǔ)題.12、(1)【解析】

利用線線平行的傳遞性、線面垂直的判定定理判定.【詳解】(1),,,則,正確(2)若,,,則,錯誤(3)若,則不成立,錯誤(4)若,,,則,錯誤【點睛】本題主要考查線面垂直的判定定理判定,考查了空間想象能力,屬于中檔題.13、191【解析】

利用輾轉(zhuǎn)相除法,求382與1337的最大公約數(shù).【詳解】因為,,所以382與1337的最大公約數(shù)為191,故填:.【點睛】本題考查利用輾轉(zhuǎn)相除法求兩個正整數(shù)的最大公因數(shù),屬于容易題.14、【解析】

利用,即可得出.【詳解】解:由已知,,又

,

故答案為:.【點睛】本題考查了反三角函數(shù)的求值、單調(diào)性,考查了推理能力與計算能力,屬于中檔題.15、【解析】

本題首先可以根據(jù)向量的運算得出,然后等式兩邊同時平方并化簡,得出,最后根據(jù)即可得出的取值范圍.【詳解】設(shè)向量與向量的夾角為,因為,所以,即,因為,所以,即,所以的取值范圍是.【點睛】本題考查向量的運算以及向量的數(shù)量積的相關(guān)性質(zhì),向量的數(shù)量積公式,考查計算能力,是簡單題.16、【解析】

直接運用空間兩點間距離公式求解即可.【詳解】由空間兩點距離公式可得:.【點睛】本題考查了空間兩點間距離公式,考查了數(shù)學(xué)運算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II)3,.【解析】

(I)利用降次公式和輔助角公式化簡解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結(jié)合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【詳解】(I)的最小正周期.(Ⅱ),.【點睛】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.18、(1).;(2).【解析】

(1)由三棱錐的體積公式可得是等比數(shù)列,從而可求得其通項公式,利用可求得,但要注意;(2)用錯位相減法求得,化簡不等式,分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值.【詳解】(1)由題意,∴,三棱錐的體積就是三棱錐的體積,它們都以為底面,因此它們的體積比等于它們高的比,即到平面的距離之比,又都在直線上,所以點到平面的距離之比就等于棱長的比,∴,,,∴.,則,時,,也適合.∴.(2)由(1),,,兩式相減得:,∴.不等式為,即,設(shè),則,∴當(dāng)時,遞增,當(dāng),遞減,是中的最大項,.不等式對恒成立,則,∴或.故的范圍是.【點睛】本題考查棱錐的體積,考查等比數(shù)列的通項公式,考查由求通項,考查錯位相減法求和,考查不等式恒成立問題.考查數(shù)列的單調(diào)性,難度較大.對學(xué)生的運算求解能力要求較高.在由求時要注意需另外求解,證明數(shù)列單調(diào)性時可以有數(shù)列的前后項作差或作商比較.19、(1)m=0;(2)m=±2.【解析】試題分析:(1)直線平分圓,即直線過圓心,將圓心坐標(biāo)代入直線方程可得m值(2)根據(jù)圓心到直線距離等于半徑列方程,解得m值試題解析:解:(1)∵直線平分圓,所以圓心在直線y=x+m上,即有m=0.(2)∵直線與圓相切,所以圓心到直線的距離等于半徑,∴d==2,m=±2.即m=±2時,直線l與圓相切.點睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點與圓的位置關(guān)系法:若直線恒過定點且定點在圓內(nèi),可判斷直線與圓相交.上述方法中最常用的是幾何法,點與圓的位置關(guān)系法適用于動直線問題.20、(1);(2)見解析.【解析】

試題分析:(1)轉(zhuǎn)移法求軌跡:設(shè)所求動點坐標(biāo)及相應(yīng)已知動點坐標(biāo),利用條件列兩種坐標(biāo)關(guān)系,最后代入已知動點軌跡方程,化簡可得所求軌跡方程;(2)證明直線過定點問題,一般方法是以算代證:即證,先設(shè)P(m,n),則需證,即根據(jù)條件可得,而,代入即得.試題解析:解:(1)設(shè)P(x,y),M(),則N(),由得.因為M()在C上,所以.因此點P的軌跡為.由題意知F(-1,0),設(shè)Q(-3,t),P(m,n),則,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又過點P存在唯一直線垂直于OQ,所以過點P且垂直于OQ的直線l過C的左焦點F.點睛:定點、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒成立的.定點、定值問題同證明問題類似,在求定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論