版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南通市海安縣2025屆數(shù)學高一下期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.采用系統(tǒng)抽樣方法從人中抽取人做問卷調(diào)查,為此將他們隨機編號為,,,,分組后某組抽到的號碼為1.抽到的人中,編號落入?yún)^(qū)間的人數(shù)為()A.10 B. C.12 D.132.函數(shù)的部分圖象如圖所示,函數(shù),則下列結論正確的是()A.B.函數(shù)與的圖象均關于直線對稱C.函數(shù)與的圖象均關于點對稱D.函數(shù)與在區(qū)間上均單調(diào)遞增3.已知等差數(shù)列an的前n項和為18,若S3=1,aA.9 B.21 C.27 D.364.等比數(shù)列中,,則等于()A.16 B.±4 C.-4 D.45.執(zhí)行如圖所示的程序框圖,輸出S的值為()A.- B. C.- D.6.在中,,,,則的面積是().A. B. C.或 D.或7.設長方體的長、寬、高分別為2,1,1,其頂點都在同一個球面上,則該球的表面積為()A. B. C. D.8.若各項為正數(shù)的等差數(shù)列的前n項和為,且,則()A.9 B.14 C.7 D.189.如圖,水平放置的三棱柱的側棱長和底邊長均為4,且側棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為()A. B. C. D.10.等差數(shù)列中,,,下列結論錯誤的是()A.,,成等比數(shù)列 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量(1,2),(x,4),且∥,則_____.12.若首項為,公比為()的等比數(shù)列滿足,則的取值范圍是________.13.已知等差數(shù)列,若,則______.14.已知等差數(shù)列的前n項和為,若,則的值為______________.15.記等差數(shù)列的前項和為,若,則________.16.已知變量和線性相關,其一組觀測數(shù)據(jù)為,由最小二乘法求得回歸直線方程為.若已知,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.等差數(shù)列的前項和為,求數(shù)列前項和.18.已知函數(shù)的圖象過點.(1)求的值;(2)判斷的奇偶性并證明.19.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.20.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC21.已知數(shù)列滿足,令(1)求證數(shù)列為等比數(shù)列,并求通項公式;(2)求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題意可得抽到的號碼構成以11為首項、以30為公差的等差數(shù)列,求得此等差數(shù)列的通項公式為an=30n﹣19,由401≤30n﹣21≤755,求得正整數(shù)n的個數(shù),即可得出結論.【詳解】∵960÷32=30,∴每組30人,∴由題意可得抽到的號碼構成以30為公差的等差數(shù)列,又某組抽到的號碼為1,可知第一組抽到的號碼為11,∴由題意可得抽到的號碼構成以11為首項、以30為公差的等差數(shù)列,∴等差數(shù)列的通項公式為an=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n為正整數(shù)可得14≤n≤25,∴做問卷C的人數(shù)為25﹣14+1=12,故選C.【點睛】本題主要考查等差數(shù)列的通項公式,系統(tǒng)抽樣的定義和方法,根據(jù)系統(tǒng)抽樣的定義轉化為等差數(shù)列是解決本題的關鍵,比較基礎.2、D【解析】
由三角函數(shù)圖像可得,,再結合三角函數(shù)圖像的性質逐一判斷即可得解.【詳解】解:由函數(shù)的部分圖象可得,,即,則,又函數(shù)圖像過點,則,即,又,即,即,則對于選項A,顯然錯誤;對于選項B,函數(shù)的圖像關于直線對稱,即B錯誤;對于選項C,函數(shù)的圖像關于點對稱,即C錯誤;對于選項D,函數(shù)的增區(qū)間為,函數(shù)的增區(qū)間為,又,,即D正確,故選:D.【點睛】本題考查了利用三角函數(shù)圖像求函數(shù)解析式,重點考查了三角函數(shù)圖像的性質,屬中檔題.3、C【解析】
利用前n項和Sn的性質可求n【詳解】因為S3而a1所以6Snn【點睛】一般地,如果an為等差數(shù)列,Sn為其前(1)若m,n,p,q∈N*,m+n=p+q,則am(2)Sn=n(3)Sn=An(4)Sn4、D【解析】分析:利用等比中項求解.詳解:,因為為正,解得.點睛:等比數(shù)列的性質:若,則.5、D【解析】試題分析:由已知可得,故選D.考點:程序框圖.6、C【解析】,∴,或.()當時,.∴.()當時,.∴.故選.7、B【解析】
先求出長方體的對角線的長度,即得外接球的直徑,再求球的表面積得解.【詳解】由題得長方體外接球的直徑.故選:B【點睛】本題主要考查長方體的外接球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、B【解析】
根據(jù)等差中項定義及條件式,先求得.再由等差數(shù)列的求和公式,即可求得的值.【詳解】數(shù)列為各項是正數(shù)的等差數(shù)列則由等差中項可知所以原式可化為,所以由等差數(shù)列求和公式可得故選:B【點睛】本題考查了等差中項的性質,等差數(shù)列前n項和的性質及應用,屬于基礎題.9、A【解析】
根據(jù)題意,得出該幾何體左視圖的高和寬的長度,求出它的面積,即可求解.【詳解】根據(jù)題意,該幾何體左視圖的高是正視圖的高,所以左視圖的高為,又由左視圖的寬是俯視圖三角形的底邊上的高,所以左視圖的寬為,所以該幾何體的左視圖的面積為,故選A.【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數(shù)量關系,利用相應公式求解.10、C【解析】
根據(jù)條件得到公差,然后得到等差數(shù)列的通項,從而對四個選項進行判斷,得到答案.【詳解】等差數(shù)列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比數(shù)列,故A選項正確,,故B選項正確,,故C選項錯誤,,故D選項正確.故選:C.【點睛】本題考查求等差數(shù)列的項,等差數(shù)列求前項的和,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據(jù)求得,從而可得,再求得的坐標,利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點睛】本題主要考查了向量平行關系的應用,以及向量的減法和向量的模的計算,其中解答中熟記向量的平行關系,以及向量的坐標運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、【解析】
由題意可得且,即且,,化簡可得由不等式的性質可得的取值范圍.【詳解】解:,故有且,化簡可得且即故答案為:【點睛】本題考查數(shù)列極限以及不等式的性質,屬于中檔題.13、【解析】
利用等差數(shù)列的通項公式直接求解.【詳解】設等差數(shù)列公差為,由,得,解得.故答案:.【點睛】本題考查等差數(shù)列的性質等基礎知識,考查運算求解能力,屬于基礎題.14、1【解析】
由等差數(shù)列的性質可得a7+a9+a11=3a9,而S17=17a9,故本題可解.【詳解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案為:1.【點睛】本題考查了等差數(shù)列的前n項和公式與等差數(shù)列性質的綜合應用,屬于基礎題.15、10【解析】
由等差數(shù)列求和的性質可得,求得,再利用性質可得結果.【詳解】因為,所以,所以,故故答案為10【點睛】本題考查了等差數(shù)列的性質,熟悉其性質是解題的關鍵,屬于基礎題.16、355【解析】
根據(jù)回歸直線必過樣本點的中心,根據(jù)橫坐標結合回歸方程求出縱坐標即可得解.【詳解】由題:,回歸直線方程為,所以,.故答案為:355【點睛】此題考查根據(jù)回歸直線方程求樣本點的中心的縱坐標,關鍵在于掌握回歸直線必過樣本點的中心,根據(jù)平均數(shù)求解.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】
由已知條件利用等差數(shù)列前項和公式求出公差和首項,由此能求出,且,當時,,當時,?!驹斀狻拷獾茫O從第項開始大于零,則,即當時,當時,綜上有【點睛】本題考查數(shù)列的前項和的求法,是中檔題,注意等差數(shù)列的函數(shù)性質的運用。18、(1),(2)奇函數(shù),證明見解析【解析】
(1)將代入解析式,解方程即可.【詳解】(1)由題知:,解得.(2).,定義域為:.,.所以,所以為奇函數(shù).【點睛】本題第一問考查對數(shù)的運算,第二問考查函數(shù)奇偶的判斷,屬于中檔題.19、(1).(2)1.【解析】
(1)利用向量平行的代數(shù)形式得到x的值;(2)由數(shù)量積的坐標形式得到x的方程,解之即可.【詳解】(1)∵∥,∴2x﹣15=0,解得x=.(2)8﹣=(6,3),∵(8﹣)?=30,∴18+3x=30,解得x=1.【點睛】平面向量的數(shù)量積計算問題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標運算公式,涉及幾何圖形的問題,先建立適當?shù)钠矫嬷苯亲鴺讼?,可起到化繁為簡的妙?利用向量夾角公式、模公式及向量垂直的充要條件,可將有關角度問題、線段長問題及垂直問題轉化為向量的數(shù)量積來解決.列出方程組求解未知數(shù).20、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長f(θ)=|AC|+|BC|+|AB|=,又,當,即時,f(θ)取得最大值.考點:1.余弦定理;1.正弦定理21、(1);(2)【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件工程師勞動合同樣本
- 2024醫(yī)院托管合作經(jīng)營合同
- 2024家電產(chǎn)品配送合同書模板
- 2024標準委托代理合同格式
- 2024下載裝飾工程承包合同書
- 2024年紙張產(chǎn)品購買合同
- 員工試用期間工作表現(xiàn)評估
- 2024年勞務派遣服務合作協(xié)議
- 600字代辦委托協(xié)議范本
- 創(chuàng)業(yè)孵化基地租賃協(xié)議案例
- MOOC 唐宋詩詞與傳統(tǒng)文化-湖南師范大學 中國大學慕課答案
- 電網(wǎng)建設項目施工項目部環(huán)境保護和水土保持標準化管理手冊(變電工程分冊)
- 2024年中考歷史八年級上冊重點知識點復習提綱(部編版)
- 小兒過敏性休克課件
- GB/T 144-2024原木檢驗
- (高清版)TDT 1062-2021 社區(qū)生活圈規(guī)劃技術指南
- 安全生產(chǎn)治本攻堅三年行動方案(2024-2026年)解讀
- T-GDWJ 020-2023 醫(yī)療機構醫(yī)療護理員服務規(guī)范
- 彈力襪的使用課件
- 2024年醫(yī)學高級職稱-婦女保健(醫(yī)學高級)筆試歷年真題薈萃含答案
- 子宮內(nèi)低氧癥護理措施
評論
0/150
提交評論