湖南省邵陽(yáng)市第十一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第1頁(yè)
湖南省邵陽(yáng)市第十一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第2頁(yè)
湖南省邵陽(yáng)市第十一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第3頁(yè)
湖南省邵陽(yáng)市第十一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第4頁(yè)
湖南省邵陽(yáng)市第十一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖南省邵陽(yáng)市第十一中學(xué)2025屆高一下數(shù)學(xué)期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若函數(shù),則的值為()A. B. C. D.2.一個(gè)圓柱的軸截面是正方形,其側(cè)面積與一個(gè)球的表面積相等,那么這個(gè)圓柱的體積與這個(gè)球的體積之比為()A.1:3 B.3:1 C.2:3 D.3:23.己知的周長(zhǎng)為,內(nèi)切圓的半徑為,,則的值為()A. B. C. D.4.若a<b,則下列不等式中正確的是()A.a(chǎn)2<b2 B. C.a(chǎn)2+b2>2ab D.a(chǎn)c2<bc25.對(duì)一切,恒成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.已知,,且,則()A.1 B.2 C.3 D.47.若一個(gè)正四棱錐的側(cè)棱和底面邊長(zhǎng)相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°8.設(shè)甲、乙兩地的距離為a(a>0),小王騎自行車以勻速?gòu)募椎氐揭业赜昧?0分鐘,在乙地休息10分鐘后,他又以勻速?gòu)囊业胤祷氐郊椎赜昧?0分鐘,則小王從出發(fā)到返回原地所經(jīng)過的路程y和其所用的時(shí)間x的函數(shù)圖象為()A. B.C. D.9.已知等差數(shù)列中,若,則()A.1 B.2 C.3 D.410.已知,所在平面內(nèi)一點(diǎn)P滿足,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則______(用表示).12.已知數(shù)列滿足且,則____________.13.已知,各項(xiàng)均為正數(shù)的數(shù)列滿足,,若,則的值是.14.已知函數(shù),下列說法:①圖像關(guān)于對(duì)稱;②的最小正周期為;③在區(qū)間上單調(diào)遞減;④圖像關(guān)于中心對(duì)稱;⑤的最小正周期為;正確的是________.15.若函數(shù),則__________.16.在數(shù)列中,,,,則_____________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.18.如圖,在中,點(diǎn)在邊上,,,.(1)求邊的長(zhǎng);(2)若的面積是,求的值.19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知b2(Ⅰ)求A的大??;(Ⅱ)如果cosB=6320.已知四棱臺(tái)中,平面ABCD,四邊形ABCD為平行四邊形,,,,,E為DC中點(diǎn).(1)求證:平面;(2)求證:;(3)求三棱錐的高.(注:棱臺(tái)的兩底面相似)21.如圖,長(zhǎng)方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),于,于,且,.現(xiàn)要在長(zhǎng)方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;(2)試確定點(diǎn)在上的位置,使得四邊形材料的面積最小,并求出其最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

根據(jù)分段函數(shù)的定義域與函數(shù)解析式的關(guān)系,代值進(jìn)行計(jì)算即可.【詳解】解:由已知,又,又,所以:.

故選:D.【點(diǎn)睛】本題考查了分段函數(shù)的函數(shù)值計(jì)算問題,抓住定義域的范圍,屬于基礎(chǔ)題.2、D【解析】

設(shè)圓柱的底面半徑為,利用圓柱側(cè)面積公式與球的表面積公式建立關(guān)系式,算出球的半徑,再利用圓柱與球的體積公式加以計(jì)算,可得所求體積之比.【詳解】設(shè)圓柱的底面半徑為,軸截面正方形邊長(zhǎng),則,可得圓柱的側(cè)面積,再設(shè)與圓柱表面積相等的球半徑為,則球的表面積,解得,因此圓柱的體積為,球的體積為,因此圓柱的體積與球的體積之比為.故選:D.【點(diǎn)睛】本題主要考查了圓柱的側(cè)面積和體積公式,以及球的表面積和體積公式的應(yīng)用,其中解答中熟記公式,合理計(jì)算半徑之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、C【解析】

根據(jù)的周長(zhǎng)為,內(nèi)切圓的半徑為,求得,再利用正弦定理,得到,然后代入余弦定理,化簡(jiǎn)得到求解.【詳解】因?yàn)榈闹荛L(zhǎng)為,內(nèi)切圓的半徑為,所以,又因?yàn)椋?由余弦定理得:,,所以,所以,即,因?yàn)锳為內(nèi)角,所以,所以.故選:C【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.4、C【解析】

利用特殊值對(duì)錯(cuò)誤選項(xiàng)進(jìn)行排除,然后證明正確的不等式.【詳解】取代入驗(yàn)證可知,A、D選項(xiàng)錯(cuò)誤;取代入驗(yàn)證可知,B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),由于,所以,即成立.故選:C【點(diǎn)睛】本小題主要考查不等式的性質(zhì),屬于基礎(chǔ)題.5、B【解析】

先求得的取值范圍,根據(jù)恒成立問題的求解策略,將原不等式轉(zhuǎn)化為,再解一元二次不等式求得的取值范圍.【詳解】解:對(duì)一切,恒成立,轉(zhuǎn)化為:的最大值,又知,的最大值為;所以,解得或.故選B.【點(diǎn)睛】本小題主要考查恒成立問題的求解策略,考查三角函數(shù)求最值的方法,考查一元二次不等式的解法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6、D【解析】

根據(jù)向量的平行可得4m=3m+4,解得即可.【詳解】,,且,則,解得,故選D.【點(diǎn)睛】本題考查了向量平行的充要條件,考查了運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.7、B【解析】

正四棱錐,連接底面對(duì)角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對(duì)角線,,易知為等腰直角三角形.中點(diǎn)為,又正四棱錐知:底面即為所求角為,答案為B【點(diǎn)睛】本題考查了線面夾角的計(jì)算,意在考察學(xué)生的計(jì)算能力和空間想象力.8、D【解析】試題分析:根據(jù)題意,甲、乙兩地的距離為a(a>0),小王騎自行車以勻速?gòu)募椎氐揭业赜昧?0min,在乙地休息10min后,他又以勻速?gòu)囊业胤祷氐郊椎赜昧?0min,那么可知先是勻速運(yùn)動(dòng),圖像為直線,然后再休息,路程不變,那么可知時(shí)間持續(xù)10min,那么最后還是同樣的勻速運(yùn)動(dòng),直線的斜率不變可知選D.考點(diǎn):函數(shù)圖像點(diǎn)評(píng):主要是考查了路程與時(shí)間的函數(shù)圖像的運(yùn)用,屬于基礎(chǔ)題.9、A【解析】

根據(jù)已知先求出數(shù)列的首項(xiàng),公差d已知,可得?!驹斀狻坑深}得,,解得,則.故選:A【點(diǎn)睛】本題考查用數(shù)列的通項(xiàng)公式求某一項(xiàng),是基礎(chǔ)題。10、D【解析】

由平面向量基本定理及單位向量可得點(diǎn)在的外角平分線上,且點(diǎn)在的外角平分線上,,,在中,由正弦定理得得解.【詳解】因?yàn)樗裕驗(yàn)榉较驗(yàn)橥饨瞧椒志€方向,所以點(diǎn)在的外角平分線上,同理,點(diǎn)在的外角平分線上,,,在中,由正弦定理得,故選:.【點(diǎn)睛】本題考查了平面向量基本定理及單位向量,考查向量的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用誘導(dǎo)公式化簡(jiǎn)求解即可.【詳解】解:,則,故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)化簡(jiǎn)求值,考查計(jì)算能力,屬于基礎(chǔ)題.12、【解析】

由題得為等差數(shù)列,得,則可求【詳解】由題:為等差數(shù)列且首項(xiàng)為2,則,所以.故答案為:2550【點(diǎn)睛】本題考查等差數(shù)列的定義,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題13、【解析】

由題意得,依次求得,,,,,∵,且>0,∴,依次求得======,∴+=+=.考點(diǎn):數(shù)列的遞推公式.14、②③⑤【解析】

將函數(shù)解析式改寫成:,即可作出函數(shù)圖象,根據(jù)圖象即可判定.【詳解】由題:,,所以函數(shù)為奇函數(shù),,是該函數(shù)的周期,結(jié)合圖象分析是其最小正周期,,作出函數(shù)圖象:可得,該函數(shù)的最小正周期為,圖像不關(guān)于對(duì)稱;在區(qū)間上單調(diào)遞減;圖像不關(guān)于中心對(duì)稱;故答案為:②③⑤【點(diǎn)睛】此題考查三角函數(shù)圖象及其性質(zhì)的辨析,涉及周期性,對(duì)稱性和單調(diào)性,作為填空題,恰當(dāng)?shù)乩脠D象解決問題能夠起到事半功倍的作用.15、【解析】

根據(jù)分段函數(shù)的解析式先求,再求即可.【詳解】因?yàn)?,所?【點(diǎn)睛】本題主要考查了分段函數(shù)求值問題,解題的關(guān)鍵是將自變量代入相應(yīng)范圍的解析式中,屬于基礎(chǔ)題.16、5【解析】

利用遞推關(guān)系式依次求值,歸納出:an+6=an,再利用數(shù)列的周期性,得解.【詳解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.則a2018=a6×336+2=a2=5【點(diǎn)睛】本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)直接利用余弦定理,即可得到本題答案;(2)由四邊形ABCD的面積=,得四邊形ABCD的面積,求S的最大值即可得到本題答案.【詳解】(1)當(dāng)時(shí),在中,由余弦定理得,設(shè)(),則,即,解得,所以;(2)的面積為,在中,由余弦定理得,所以,的面積為,所以,四邊形的面積為,因?yàn)?所以當(dāng)時(shí),四邊形的面積最大,最大值為.【點(diǎn)睛】本題主要考查利用余弦定理、面積公式及三角函數(shù)的性質(zhì)解決實(shí)際問題.18、(1)2;(2)【解析】

(1)設(shè),利用余弦定理列方程可得:,解方程即可(2)利用(1)中結(jié)果即可判斷為等邊三角形,即可求得中邊上的高為,再利用的面積是即可求得:,結(jié)合余弦定理可得:,再利用正弦定理可得:,問題得解【詳解】(1)在中,設(shè),則,由余弦定理得:即:解之得:,即邊的長(zhǎng)為2.(2)由(1)得為等邊三角形,作于,則∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【點(diǎn)睛】本題主要考查了利用正、余弦定理解三角形,還考查了三角形面積公式的應(yīng)用及計(jì)算能力,屬于中檔題19、(1)π3;(2)3【解析】試題分析:(1)先根據(jù)條件b2+c2=a2+bc結(jié)合余弦定理求出cosA試題解析:(1)因?yàn)閎2所以cosA=又因?yàn)锳∈(0,π),所以A=π(2)解:因?yàn)閏osB=63所以sinB=由正弦定理asin得.考點(diǎn):1.正弦定理與余弦定理;2.同角三角函數(shù)的基本關(guān)系20、(1)證明見解析;(2)證明見解析;(3).【解析】

(1)連結(jié),可證四邊形為平行四邊形,故可證平面;(2)連結(jié)BD,在中運(yùn)用余弦定理可得:,利用勾股定理和線面垂直的性質(zhì),可得平面,因此可證;(3)根據(jù)題意,不難求,再利用即可求三棱錐的高.【詳解】(1)證明:連結(jié),因?yàn)闉樗睦馀_(tái),所以,又因?yàn)樗倪呅蜛BCD為平行四邊形,,,所以,又,且,∴四邊形為平行四邊形,,又平面,平面,平面.(2)證明:連結(jié)BD,在中運(yùn)用余弦定理可得:,∴由勾股定理逆定理得,即.又平面ABCD,,平面,所以.(3)在中,,,,所以,故.由(1)知,由(2)知,,所以.在中,由勾股定理得,在中,由,可得,設(shè)O為DB的中點(diǎn),連結(jié),則,且,又,所以,由勾股定理得,在中,因?yàn)?,,,所以,即,故,設(shè)所求棱錐的高為h,則,所以.【點(diǎn)睛】本題考查線面平行、線線垂直的證明,棱錐的高,考查了三棱錐體積計(jì)算公式,利用體積轉(zhuǎn)化法求高,屬于中等題.21、(1)見解析;(2)當(dāng)時(shí),四邊形材料的面積最小,最小值為.【解析】分析:(1)通過直角三角形的邊角關(guān)系,得出和,進(jìn)而得出四邊形材料的面積的表達(dá)式,再結(jié)合已知尺寸條件,確定角的范圍.(2)根據(jù)正切的兩角差公式和換元法,化簡(jiǎn)和整理函數(shù)表達(dá)式,最后由基本不等式,確定面積最小值及對(duì)應(yīng)的點(diǎn)在上的位置.詳解:解:(1)在直角中,因?yàn)?,,所以,所以,在直角中,因?yàn)?,,所以,所以,所以?(2)因?yàn)?,令,由,得,所以,?dāng)且僅當(dāng)時(shí),即時(shí)等號(hào)成立,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論