畢節(jié)市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
畢節(jié)市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
畢節(jié)市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
畢節(jié)市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
畢節(jié)市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

畢節(jié)市重點(diǎn)中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,,若向量與的夾角為,則實(shí)數(shù)()A. B. C. D.2.函數(shù)的圖象如圖所示,則y的表達(dá)式為()A. B.C. D.3.如圖,是的直觀圖,其中軸,軸,那么是()A.等腰三角形 B.鈍角三角形 C.等腰直角三角形 D.直角三角形4.已知、都是公差不為0的等差數(shù)列,且,,則的值為()A.2 B.-1 C.1 D.不存在5.函數(shù),若方程恰有三個(gè)不同的解,記為,則的取值范圍是()A. B. C. D.6.已知隨機(jī)變量服從正態(tài)分布,且,,則()A.0.2 B.0.3 C.0.7 D.0.87.若兩等差數(shù)列,前項(xiàng)和分別為,,滿足,則的值為().A. B. C. D.8.《九章算術(shù)》中有這樣一個(gè)問題:今有女子善織,日增等尺,七日織二十八尺,第二日、第五日、第八日所織之和為十五尺,問若聘該女子做工半月(15日),一共能織布幾尺()A.75 B.85 C.105 D.1209.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.10.設(shè)是內(nèi)任意一點(diǎn),表示的面積,記,定義,已知,是的重心,則()A.點(diǎn)在內(nèi) B.點(diǎn)在內(nèi)C.點(diǎn)在內(nèi) D.點(diǎn)與點(diǎn)重合二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)的內(nèi)角、、的對(duì)邊分別為、、,且滿足.則______.12.某校選修“營(yíng)養(yǎng)與衛(wèi)生”課程的學(xué)生中,高一年級(jí)有30名,高二年級(jí)有40名.現(xiàn)用分層抽樣的方法從這70名學(xué)生中抽取一個(gè)樣本,已知在高二年級(jí)的學(xué)生中抽取了8名,則在該校高一年級(jí)的學(xué)生中應(yīng)抽取的人數(shù)為________.13.向量在邊長(zhǎng)為1的正方形網(wǎng)格中的位置如圖所示,則以向量為鄰邊的平行四邊形的面積是_________.14.設(shè)向量滿足,,,.若,則的最大值是________.15.已知點(diǎn)A(-a,0),B(a,0)(a>0),若圓(x-2)2+(y-2)2=2上存在點(diǎn)C16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(其中).(1)當(dāng)時(shí),求不等式的解集;(2)若關(guān)于的不等式恒成立,求的取值范圍.18.用紅、黃、藍(lán)三種不同顏色給圖中3個(gè)矩形隨機(jī)涂色,每個(gè)矩形只涂一種顏色,求3個(gè)矩形顏色都不同的概率.19.已知,,分別為三個(gè)內(nèi)角,,的對(duì)邊,.(1)求角的大?。唬?)若,的面積為,求邊,.20.已知圓:與圓:.(1)求兩圓的公共弦長(zhǎng);(2)過平面上一點(diǎn)向圓和圓各引一條切線,切點(diǎn)分別為,設(shè),求證:平面上存在一定點(diǎn)使得到的距離為定值,并求出該定值.21.已知集合,集合.(1)求;(2)若不等式的解集為,求不等式的解集.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

根據(jù)坐標(biāo)運(yùn)算可求得與,從而得到與;利用向量夾角計(jì)算公式可構(gòu)造方程求得結(jié)果.【詳解】由題意得:,,,解得:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用向量數(shù)量積、模長(zhǎng)和夾角求解參數(shù)值的問題,關(guān)鍵是能夠通過坐標(biāo)運(yùn)算表示出向量和模長(zhǎng),進(jìn)而利用向量夾角公式構(gòu)造方程.2、B【解析】

根據(jù)圖像最大值和最小值可得,根據(jù)最大值和最小值的所對(duì)應(yīng)的的值,可得周期,然后由,得到,代入點(diǎn),結(jié)合的范圍,得到答案.【詳解】根據(jù)圖像可得,,即,根據(jù),得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故選B.【點(diǎn)睛】本題考查根據(jù)函數(shù)圖像求正弦型函數(shù)的解析式,屬于簡(jiǎn)單題.3、D【解析】

利用斜二測(cè)畫法中平行于坐標(biāo)軸的直線,平行關(guān)系不變這個(gè)原則得出的形狀.【詳解】在斜二測(cè)畫法中,平行于坐標(biāo)軸的直線,平行關(guān)系不變,則在原圖形中,軸,軸,所以,,因此,是直角三角形,故選D.【點(diǎn)睛】本題考查斜二測(cè)直觀圖還原,解題時(shí)要注意直觀圖的還原原則,并注意各線段長(zhǎng)度的變化,考查分析能力,屬于基礎(chǔ)題.4、C【解析】

首先根據(jù)求出數(shù)列、公差之間的關(guān)系,再代入即可?!驹斀狻恳?yàn)楹投际枪畈粸榱愕牡炔顢?shù)列,所以設(shè)故,可得又因?yàn)楹痛雱t.故選:C.【點(diǎn)睛】本題主要考查了極限的問題以及等差數(shù)列的通項(xiàng)屬于基礎(chǔ)題。5、D【解析】

由方程恰有三個(gè)不同的解,作出的圖象,確定,的取值范圍,得到的對(duì)稱性,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】設(shè)

作出函數(shù)的圖象如圖:由

則當(dāng)

時(shí)

,,

即函數(shù)的一條對(duì)稱軸為

,要使方程恰有三個(gè)不同的解,則

,

此時(shí)

,

關(guān)于

對(duì)稱,則

當(dāng)

,即

,則

的取值范圍是,選D.【點(diǎn)睛】本題主要考查了方程與函數(shù),數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵,數(shù)學(xué)結(jié)合也是數(shù)學(xué)中比較重要的一種思想方法.6、B【解析】隨機(jī)變量服從正態(tài)分布,所以曲線關(guān)于對(duì)稱,且,由,可知,所以,故選B.7、B【解析】解:因?yàn)閮傻炔顢?shù)列、前項(xiàng)和分別為、,滿足,故,選B8、D【解析】設(shè)第一天織尺,第二天起每天比前一天多織尺,由已知得,,故選D.【方法點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,屬于中檔題.等差數(shù)列基本量的運(yùn)算是等差數(shù)列的一類基本題型,數(shù)列中的五個(gè)基本量,一般可以“知二求三”,通過列方程組所求問題可以迎刃而解,另外,解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.9、B【解析】

試題分析:根據(jù)誘導(dǎo)公式和兩角和的正弦公式以及正弦定理計(jì)算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點(diǎn)睛:本題主要考查正弦定理及余弦定理的應(yīng)用,屬于難題.在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來說,當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.10、A【解析】解:由已知得,f(P)=(λ1,λ2,λ3)中的三個(gè)坐標(biāo)分別為P分△ABC所得三個(gè)三角形的高與△ABC的高的比值,∵f(Q)=(1/2,1/3,1/6)∴P離線段AB的距離最近,故點(diǎn)Q在△GAB內(nèi)由分析知,應(yīng)選A.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

解法1有題設(shè)及余弦定理得.故.解法2如圖4,過點(diǎn)作,垂足為.則,.由題設(shè)得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.12、6【解析】

利用分層抽樣的定義求解.【詳解】設(shè)從高一年級(jí)的學(xué)生中抽取x名,由分層抽樣的知識(shí)可知,解得x=6.故答案為6.【點(diǎn)睛】本題主要考查分層抽樣,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.13、3【解析】

將向量平移至相同的起點(diǎn),寫出向量對(duì)應(yīng)的坐標(biāo),計(jì)算向量的夾角,從而求得面積.【詳解】根據(jù)題意,將兩個(gè)向量平移至相同的起點(diǎn),以起點(diǎn)為原點(diǎn)建立坐標(biāo)系如下所示:則,故.又兩向量的夾角為銳角,故,則該平行四邊形的面積為.故答案為:3.【點(diǎn)睛】本題考查用向量解決幾何問題的能力,涉及向量坐標(biāo)的求解,夾角的求解,屬基礎(chǔ)題.14、【解析】

令,計(jì)算出模的最大值即可,當(dāng)與同向時(shí)的模最大.【詳解】令,則,因?yàn)?,所以?dāng),,因此當(dāng)與同向時(shí)的模最大,【點(diǎn)睛】本題主要考查了向量模的計(jì)算,以及二次函數(shù)在給定區(qū)間上的最值.整體換元的思想,屬于較的難題,在解二次函數(shù)的問題時(shí)往往結(jié)合圖像、開口、對(duì)稱軸等進(jìn)行分析.15、3【解析】

利用參數(shù)方程假設(shè)C點(diǎn)坐標(biāo),表示出AC和BC,利用AC?BC=0可得到a【詳解】設(shè)C∴∵∠ACB=90°∴∴當(dāng)sinα+∴0<a≤3本題正確結(jié)果:3【點(diǎn)睛】本題考查圓中參數(shù)范圍求解的問題,關(guān)鍵是能夠利用圓的參數(shù)方程,利用向量數(shù)量積及三角函數(shù)關(guān)系求得最值.16、10【解析】

將和用首項(xiàng)和公差表示,解方程組,求出首項(xiàng)和公式,利用公式求解.【詳解】設(shè)該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點(diǎn)睛】本題考查由基本量計(jì)算等差數(shù)列的通項(xiàng)公式以及前項(xiàng)和,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】

(1)先由,將不等式化為,直接求解,即可得出結(jié)果;(2)先由題意得到恒成立,根據(jù)含絕對(duì)值不等式的性質(zhì)定理,得到,從而可求出結(jié)果.【詳解】(1)當(dāng)時(shí),求不等式,即為,所以,即或,原不等式的解集為或.(2)不等式,即為,即關(guān)于的不等式恒成立.而,所以,解得或,解得或.所以的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記不等式的解法,以及絕對(duì)值不等式的性質(zhì)定理即可,屬于常考題型.18、【解析】試題分析:可畫出樹枝圖,得到基本事件的總數(shù),再利用古典概型及其概率的計(jì)算公式,即可求解事件的概率.試題解析:所有可能的基本事件共有27個(gè),如圖所示.記“3個(gè)矩形顏色都不同”為事件A,由圖,可知事件A的基本事件有2×3=6(個(gè)),故P(A)==.19、(1);(2).【解析】

(1)利用正弦定理化邊為角,再依據(jù)兩角和的正弦公式以及誘導(dǎo)公式,即可求出,進(jìn)而求得角A的大?。海?)依第一問結(jié)果,先由三角形面積公式求出,再利用余弦定理求出,聯(lián)立即可求解出,的值.【詳解】(1)由及正弦定理得,整理得,,,因?yàn)?,且,所以,,又,所以?(2)因?yàn)榈拿娣e,所以,①由余弦定理得,,所以,②聯(lián)立①②解得,.【點(diǎn)睛】本題主要考查利用正余弦定理解三角形和三角形面積公式的應(yīng)用,涉及利用兩角和的正弦公式、誘導(dǎo)公式對(duì)三角函數(shù)式的恒等變換.20、(1)(2)【解析】

(1)把兩圓方程相減得到公共弦所在直線方程,再根據(jù)點(diǎn)到直線距離公式與圓的垂徑定理求兩圓的公共弦長(zhǎng);(2)根據(jù)圓的切線長(zhǎng)與半徑的關(guān)系代入化簡(jiǎn)即可得到點(diǎn)的軌跡方程,進(jìn)而求解.【詳解】解:(1)由,相減得兩圓的公共弦所在直線方程為:,設(shè)(0,0)到的距離為,則所以,公共弦長(zhǎng)為所以,公共弦長(zhǎng)為.(2)證明:由題設(shè)得:化簡(jiǎn)得:配方得:所以,存在定點(diǎn)使得到的距離為定值,且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論