




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.2.已知是雙曲線的左右焦點(diǎn),過的直線與雙曲線的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.3.正項(xiàng)等比數(shù)列中,,且與的等差中項(xiàng)為4,則的公比是()A.1 B.2 C. D.4.下列判斷錯(cuò)誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件5.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.6.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.7.命題:存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.8.已知函數(shù)是上的減函數(shù),當(dāng)最小時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.棱長為2的正方體內(nèi)有一個(gè)內(nèi)切球,過正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.110.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.611.已知復(fù)數(shù),則的虛部為()A. B. C. D.112.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí)實(shí)數(shù)a的值為_____.14.在編號(hào)為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機(jī)抽取其中的三張,則抽取的三張卡片編號(hào)之和是偶數(shù)的概率為________.15.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.16.設(shè)P為有公共焦點(diǎn)的橢圓與雙曲線的一個(gè)交點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點(diǎn)個(gè)數(shù).18.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,且.(1)證明:;(2)若的面積,,求角.19.(12分)已知函數(shù),.(1)當(dāng)為何值時(shí),軸為曲線的切線;(2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).20.(12分)已知函數(shù)(1)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;(2)求證:21.(12分)已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓相切.為左頂點(diǎn),過點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于,兩點(diǎn).(1)求橢圓的方程;(2)以線段為直徑的圓是否過定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.22.(10分)已知中,角,,的對(duì)邊分別為,,,已知向量,且.(1)求角的大??;(2)若的面積為,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點(diǎn)睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計(jì)算,考查了學(xué)生的運(yùn)算能力,屬于中檔題.2、D【解析】
根據(jù)雙曲線的定義可得的邊長為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.3、D【解析】
設(shè)等比數(shù)列的公比為q,,運(yùn)用等比數(shù)列的性質(zhì)和通項(xiàng)公式,以及等差數(shù)列的中項(xiàng)性質(zhì),解方程可得公比q.【詳解】由題意,正項(xiàng)等比數(shù)列中,,可得,即,與的等差中項(xiàng)為4,即,設(shè)公比為q,則,則負(fù)的舍去,故選D.【點(diǎn)睛】本題主要考查了等差數(shù)列的中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列通項(xiàng)公式,合理利用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了方程思想和運(yùn)算能力,屬于基礎(chǔ)題.4、D【解析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),依次對(duì)四個(gè)選項(xiàng)加以分析判斷,進(jìn)而可求解.【詳解】對(duì)于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對(duì)稱性,有,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),已知直線平面,直線平面,則當(dāng)時(shí)一定有,充分性成立,而當(dāng)時(shí),不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對(duì)于選項(xiàng),,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故充分性不成立;若,僅當(dāng)時(shí)有,當(dāng)時(shí),不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【點(diǎn)睛】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識(shí),考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.5、A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過E,F(xiàn)作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.6、A【解析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點(diǎn)睛】本題考查了常見幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.7、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項(xiàng).【詳解】對(duì)于命題,由于,所以命題為真命題.對(duì)于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.8、A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時(shí),,之后將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個(gè)數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時(shí),,函數(shù)恰有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)實(shí)根,等價(jià)于函數(shù)與的圖像有兩個(gè)交點(diǎn).畫出函數(shù)的簡圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問題,涉及到的知識(shí)點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.9、C【解析】
連結(jié)并延長PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對(duì)棱C1D1于R,則R為對(duì)棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.10、C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點(diǎn)睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.11、C【解析】
先將,化簡轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識(shí)得到答案.【詳解】由圖象知:,∴.又時(shí)函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個(gè)單位即可得到的圖象,故選C.【點(diǎn)睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點(diǎn)法”中相對(duì)應(yīng)的特殊點(diǎn)求,一般用最高點(diǎn)或最低點(diǎn)求.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
討論三種情況,a<0時(shí),根據(jù)均值不等式得到a(﹣a)≤﹣14,計(jì)算等號(hào)成立的條件得到答案.【詳解】已知關(guān)于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0時(shí),[x﹣(a)](x﹣4)<0,其中a0,故解集為(a,4),由于a(﹣a)≤﹣14,當(dāng)且僅當(dāng)﹣a,即a=﹣1時(shí)取等號(hào),∴a的最大值為﹣4,當(dāng)且僅當(dāng)a4時(shí),A中共含有最少個(gè)整數(shù),此時(shí)實(shí)數(shù)a的值為﹣1;②a=0時(shí),﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無窮多,故a=0不符合條件;③a>0時(shí),[x﹣(a)](x﹣4)>0,其中a4,∴故解集為(﹣∞,4)∪(a,+∞),整數(shù)解有無窮多,故a>0不符合條件;綜上所述,a=﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了解不等式,均值不等式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.14、【解析】
先求出所有的基本事件個(gè)數(shù),再求出“抽取的三張卡片編號(hào)之和是偶數(shù)”這一事件包含的基本事件個(gè)數(shù),利用古典概型的概率計(jì)算公式即可算出結(jié)果.【詳解】一次隨機(jī)抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個(gè),其中“抽取的三張卡片編號(hào)之和是偶數(shù)”包含6個(gè)基本事件,因此“抽取的三張卡片編號(hào)之和是偶數(shù)”的概率為:.故答案為:.【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,屬于基礎(chǔ)題.15、【解析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點(diǎn)睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.16、【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值;(3)函數(shù)的零點(diǎn)個(gè)數(shù)為.【解析】
(1)求出和的值,利用點(diǎn)斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而可得出該函數(shù)的極小值;(3)由當(dāng)時(shí),以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1)因?yàn)?,所以.所以,.所以曲線在點(diǎn)處的切線為;(2)因?yàn)?,令,得或.列表如下?極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時(shí),函數(shù)有極小值;(3)當(dāng)時(shí),,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點(diǎn)個(gè)數(shù)為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,考查分析問題和解決問題的能力,屬于中等題.18、(1)見解析;(2)【解析】
(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結(jié)論,得到,利用三角形的面積公式列方程,由此求得,進(jìn)而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,∴.(2)由(1)及正弦定理得,即,∴,∴,∴.,∴,,.【點(diǎn)睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.19、(1);(2)見解析.【解析】
(1)設(shè)切點(diǎn)坐標(biāo)為,然后根據(jù)可解得實(shí)數(shù)的值;(2)令,,然后對(duì)實(shí)數(shù)進(jìn)行分類討論,結(jié)合和的符號(hào)來確定函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線與軸相切于點(diǎn),則,即,解得.所以,當(dāng)時(shí),軸為曲線的切線;(2)令,,則,,由,得.當(dāng)時(shí),,此時(shí),函數(shù)為增函數(shù);當(dāng)時(shí),,此時(shí),函數(shù)為減函數(shù).,.①當(dāng),即當(dāng)時(shí),函數(shù)有一個(gè)零點(diǎn);②當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);③當(dāng),即當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn);④當(dāng),即當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn);⑤當(dāng),即當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn).綜上所述,當(dāng)或時(shí),函數(shù)只有一個(gè)零點(diǎn);當(dāng)或時(shí),函數(shù)有兩個(gè)零點(diǎn);當(dāng)時(shí),函數(shù)有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)的幾何意義研究切線方程和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,關(guān)鍵是分類討論思想的應(yīng)用,屬難題.20、(1);(2)見解析.【解析】
(1)將問題轉(zhuǎn)化為對(duì)任意恒成立,換元構(gòu)造新函數(shù)即可得解;(2)結(jié)合(1)可得,令,求導(dǎo)后證明其導(dǎo)函數(shù)單調(diào)遞增,結(jié)合,即可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程設(shè)計(jì)規(guī)范與標(biāo)準(zhǔn)考核試卷
- 機(jī)織運(yùn)動(dòng)服裝在運(yùn)動(dòng)康復(fù)中的角色考核試卷
- 技術(shù)服務(wù)多元化戰(zhàn)略與市場拓展考核試卷
- 服裝行業(yè)大數(shù)據(jù)分析應(yīng)用考核試卷
- 戶外登山鞋租賃與保養(yǎng)常識(shí)考核試卷
- 中小學(xué)生手衛(wèi)生課件
- 施工電梯備案合同范本
- 勞務(wù)永久合同范本
- 寵物購買意向合同范本
- 鑄造機(jī)械采購合同范本
- 2025年往年教師職稱考試試題
- 山東省海洋知識(shí)競賽(初中組)考試題庫500題(含答案)
- 服務(wù)行業(yè)人力資源薪酬體系管理與優(yōu)化
- 《蔚來發(fā)展》課件
- 幼兒園開學(xué)前的廚房人員培訓(xùn)
- 《幼兒教育政策與法規(guī)》教案-單元6 幼兒園的工作人員
- 虛擬制片技術(shù)在VRAR應(yīng)用中的角色建模與渲染-洞察分析
- 2024年山東商務(wù)職業(yè)學(xué)院高職單招語文歷年參考題庫含答案解析
- 醫(yī)學(xué)教育中的學(xué)習(xí)風(fēng)格與個(gè)性化教學(xué)
- GB/T 45167-2024熔模鑄鋼件、鎳合金鑄件和鈷合金鑄件表面質(zhì)量目視檢測方法
- 2023年東北公司加油站賬務(wù)人員考試題庫
評(píng)論
0/150
提交評(píng)論