2025屆山東省濟(jì)南市長清第一中學(xué)大學(xué)科技園校區(qū)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2025屆山東省濟(jì)南市長清第一中學(xué)大學(xué)科技園校區(qū)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2025屆山東省濟(jì)南市長清第一中學(xué)大學(xué)科技園校區(qū)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2025屆山東省濟(jì)南市長清第一中學(xué)大學(xué)科技園校區(qū)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2025屆山東省濟(jì)南市長清第一中學(xué)大學(xué)科技園校區(qū)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆山東省濟(jì)南市長清第一中學(xué)大學(xué)科技園校區(qū)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.直線在軸上的截距為()A. B. C. D.2.若是異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交3.已知圓心為C(6,5),且過點B(3,6)的圓的方程為()A. B.C. D.4.設(shè)數(shù)列是公差不為零的等差數(shù)列,它的前項和為,且、、成等比數(shù)列,則等于()A. B. C. D.5.半圓的直徑,為圓心,是半圓上不同于的任意一點,若為半徑上的動點,則的最小值是()A.2 B.0 C.-2 D.46.在長方體中,,,則異面直線與所成角的余弦值為()A. B.C. D.7.將函數(shù)的圖像上所有的點向左平移個單位長度,再把所得圖像上各點的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變),得到函數(shù)的圖像,則在區(qū)間上的最小值為()A. B. C. D.8.已知β為銳角,角α的終邊過點(3,4),sin(α+β)=,則cosβ=()A. B. C. D.或9.如圖,正方體的棱長為1,線段上有兩個動點E、F,且,則下列結(jié)論中錯誤的是A.B.C.三棱錐的體積為定值D.10.在中,若,且,則的形狀為()A.直角三角形 B.等腰直角三角形C.正三角形或直角三角形 D.正三角形二、填空題:本大題共6小題,每小題5分,共30分。11.對任意的θ∈0,π2,不等式112.在正方體中,是的中點,連接、,則異面直線、所成角的正弦值為_______.13.對于數(shù)列,若存在,使得,則刪去,依此操作,直到所得到的數(shù)列沒有相同項,將最后得到的數(shù)列稱為原數(shù)列的“基數(shù)列”.若,則數(shù)列的“基數(shù)列”的項數(shù)為__________________.14.若6是-2和k的等比中項,則______.15.設(shè)的內(nèi)角、、的對邊分別為、、,且滿足.則______.16.已知向量,且,則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在△ABC中,角A,B,C所對的邊分別是a,b,c,a=7,b=8,.(1)求邊AB的長;(2)求△ABC的面積.18.泉州與福州兩地相距約200千米,一輛貨車從泉州勻速行駛到福州,規(guī)定速度不得超過千米/時,已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度千米/時的平方成正比,比例系數(shù)為0.01;固定部分為64元.(1)把全程運輸成本元表示為速度千米/時的函數(shù),并指出這個函數(shù)的定義域;(2)為了使全程運輸成本最小,貨車應(yīng)以多大速度行駛?19.已知的三個頂點,,.(1)求邊所在直線的方程;(2)求邊上中線所在直線的方程.20.某種植園在芒果臨近成熟時,隨機(jī)從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.(1)估計這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表);(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機(jī)抽取5個,再從這5個中隨機(jī)抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:方案①:所有芒果以9元/千克收購;方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.通過計算確定種植園選擇哪種方案獲利更多.參考數(shù)據(jù):.21.已知函數(shù).(1)求(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

取計算得到答案.【詳解】直線在軸上的截距:取故答案選A【點睛】本題考查了直線的截距,屬于簡單題.2、D【解析】

若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項、、不正確故選.3、A【解析】

在知道圓心的情況下可設(shè)圓的標(biāo)準(zhǔn)方程為,然后根據(jù)圓過點B(3,6),代入方程可求出r的值,得到圓的方程.【詳解】因為,又因為圓心為C(6,5),所以所求圓的方程為,因為此圓過點B(3,6),所以,所以,因而所求圓的方程為.考點:圓的標(biāo)準(zhǔn)方程.4、A【解析】

設(shè)等差數(shù)列的公差為,根據(jù)得出與的等量關(guān)系,即可計算出的值.【詳解】設(shè)等差數(shù)列的公差為,由于、、成等比數(shù)列,則有,所以,,化簡得,因此,.故選:A.【點睛】本題考查等差數(shù)列前項和中基本量的計算,解題的關(guān)鍵就是結(jié)合題意得出首項與公差的等量關(guān)系,考查計算能力,屬于基礎(chǔ)題.5、C【解析】

將轉(zhuǎn)化為,利用向量數(shù)量積運算化簡,然后利用基本不等式求得表達(dá)式的最小值.【詳解】畫出圖像如下圖所示,,等號在,即為的中點時成立.故選C.【點睛】本小題主要考查平面向量加法運算,考查平面向量的數(shù)量積運算,考查利用基本不等式求最值,屬于中檔題.6、C【解析】

畫出長方體,將平移至,則,則即為異面直線與所成角,由余弦定理即可求解.【詳解】根據(jù)題意,畫出長方體如下圖所示:將平移至,則即為異面直線與所成角,,由余弦定理可得故選:C【點睛】本題考查了長方體中異面直線的夾角求法,余弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.7、A【解析】

先按照圖像變換的知識求得的解析式,然后根據(jù)三角函數(shù)求最值的方法,求得在上的最小值.【詳解】圖像上所有的點向左平移個單位長度得到,把所得圖像上各點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)得到,由得,故在區(qū)間上的最小值為.故選A.【點睛】本小題主要考查三角函數(shù)圖像變換,考查三角函數(shù)值域的求法,屬于基礎(chǔ)題.8、B【解析】

由題意利用任意角的三角函數(shù)的定義求得sinα和cosα,再利用同角三角函數(shù)的基本關(guān)系求得cos(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【詳解】β為銳角,角α的終邊過點(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β為鈍角,∴cos(α+β),則cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα??,故選B.【點睛】本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、兩角和差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】可證,故A正確;由∥平面ABCD,可知,B也正確;連結(jié)BD交AC于O,則AO為三棱錐的高,,三棱錐的體積為為定值,C正確;D錯誤。選D。10、D【解析】

由兩角和的正切公式求得,從而得,由二倍角公式求得,再求得,注意檢驗符合題意,可判斷三角形形狀.【詳解】,∴,∴,由,即.∴或.當(dāng)時,,無意義.當(dāng)時,,此時為正三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查兩角和的正切公式和二倍角公式,根據(jù)三角公式求出角是解題的基本方法.二、填空題:本大題共6小題,每小題5分,共30分。11、-4,5【解析】1sin2θ+4cos2點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤.12、【解析】

作出圖形,設(shè)正方體的棱長為,取的中點,連接、,推導(dǎo)出,并證明出,可得出異面直線、所成的角為,并計算出、,可得出,進(jìn)而得解.【詳解】如下圖所示,設(shè)正方體的棱長為,取的中點,連接、,為的中點,則,,且,為的中點,,,在正方體中,且,則四邊形為平行四邊形,,所以,異面直線、所成的角為,在中,,,.因此,異面直線、所成角的正弦值為.故答案為:.【點睛】本題考查異面直線所成角的正弦值的計算,考查計算能力,屬于中等題.13、10【解析】

由題意可得,只需計算所有可能取值的個數(shù)即可.【詳解】因為求的可能取值個數(shù),由周期性,故只需考慮的情況即可.此時.一共19個取值,故只需分析,又由,故,,即不同的取值個數(shù)一共為個.即“基數(shù)列”分別為和共10項.故答案為10【點睛】本題主要考查余弦函數(shù)的周期性.注意到隨著的增大的值周期變化,故只需考慮一個周期內(nèi)的情況.14、-18【解析】

根據(jù)等比中項的性質(zhì),列出等式可求得結(jié)果.【詳解】由等比中項的性質(zhì)可得,,得.故答案為:-18【點睛】本題主要考查等比中項的性質(zhì),屬于基礎(chǔ)題.15、4【解析】

解法1有題設(shè)及余弦定理得.故.解法2如圖4,過點作,垂足為.則,.由題設(shè)得.又,聯(lián)立解得,.故.解法3由射影定理得.又,與上式聯(lián)立解得,.故.16、-7【解析】

,利用列方程求解即可.【詳解】,且,,解得:.【點睛】考查向量加法、數(shù)量積的坐標(biāo)運算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)AB的長為1.(2)6.【解析】

(1)利用余弦定理解方程,解方程求得的長.(2)根據(jù)的值,求得的值,由三角形面積公式,求得三角形的面積.【詳解】(1)∵a=7,b=8,.∴由余弦定理b2=a2+c2﹣2accosB,可得:64=49+c2﹣2,可得:c2+2c﹣15=0,∴解得:c=1,或﹣5(舍去),可得:AB的長為1.(2)∵,B∈(0,π),∴sinB,又a=7,c=1,∴S△ABCacsinB6.【點睛】本小題主要考查余弦定理解三角形,考查三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系式,考查運算求解能力,屬于基礎(chǔ)題.18、(1),;(2),貨車應(yīng)以千米/時速度行駛,貨車應(yīng)以千米/時速度行駛【解析】

(1)先計算出從泉州勻速行駛到福州所用時間,然后乘以每小時的運輸成本(可變部分加固定部分),由此求得全程運輸成本,并根據(jù)速度限制求得定義域.(2)由,,對進(jìn)行分類討論.當(dāng)時,利用基本不等式求得行駛速度.當(dāng)時,根據(jù)的單調(diào)性求得行駛速度.【詳解】(1)依題意一輛貨車從泉州勻速行駛到福州所用時間為小時,全程運輸成本為,所求函數(shù)定義域為;(2)當(dāng)時,故有,當(dāng)且僅當(dāng),即時,等號成立.當(dāng)時,易證在上單調(diào)遞減故當(dāng)千米/時,全程運輸成本最小.綜上,為了使全程運輸成本最小,,貨車應(yīng)以千米/時速度行駛,貨車應(yīng)以千米/時速度行駛.【點睛】本小題主要考查函數(shù)模型在實際生活中的應(yīng)用,考查基本不等式求最小值,考查函數(shù)的單調(diào)性,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.19、(1)(2)【解析】

(1)由直線的兩點式方程求解即可;(2)先由中點坐標(biāo)公式求出中點的坐標(biāo),再結(jié)合直線的兩點式方程求解即可.【詳解】(1)因為,,由直線的兩點式方程可得:邊所在直線的方程,化簡可得;(2)由,,則中點,即,則邊上中線所在直線的方程為,化簡可得.【點睛】本題考查了中點坐標(biāo)公式,重點考查了直線的兩點式方程,屬基礎(chǔ)題.20、(1)255;(2);(3)選擇方案②獲利多【解析】

1)由頻率分布直方圖能求出這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個范圍內(nèi)抽取5個芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個,記為a1,a2,質(zhì)量在[250,300)內(nèi)的芒果有3個,記為b1,b2,b3,從抽取的5個芒果中抽取2個,利用列舉法能求出這2個芒果都來自同一個質(zhì)量區(qū)間的概率.(3)方案①收入22950元,方案②:低于250克的芒果的收入為8400元,不低于250克的芒果的收入為17400元,由此能求出選擇方案②獲利多.【詳解】(1)由頻率分布直方圖知,各區(qū)間頻率為0.07,0.15,0.20,0.30,0.25,0.03這組數(shù)據(jù)的平均數(shù).(2)利用分層抽樣從這兩個范圍內(nèi)抽取5個芒果,則質(zhì)量在[200,250)內(nèi)的芒果有2個,記為,,質(zhì)量在[250,300)內(nèi)的芒果有3個,記為,,;從抽取的5個芒果中抽取2個共有10種不同情況:,,,,,,,,,.記事件為“這2個芒果都來自同一個質(zhì)量區(qū)間”,則有4種不同組合:,,,從而,故這2個芒果都來自同一個質(zhì)量區(qū)間的概率為.(3)方案①收入:(元);方案②:低于250克的芒果收入為(元);不低于250克的芒果收入為(元);故方案②的收入為(元).由于,所以選擇方案②獲利多.【點睛】本題考查平均數(shù)、概率的求法,考查頻率分布直方圖、古典概型等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是中檔題.21、(1),的增區(qū)間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論