云南省玉溪市富良棚中學2025屆數(shù)學高一下期末檢測試題含解析_第1頁
云南省玉溪市富良棚中學2025屆數(shù)學高一下期末檢測試題含解析_第2頁
云南省玉溪市富良棚中學2025屆數(shù)學高一下期末檢測試題含解析_第3頁
云南省玉溪市富良棚中學2025屆數(shù)學高一下期末檢測試題含解析_第4頁
云南省玉溪市富良棚中學2025屆數(shù)學高一下期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省玉溪市富良棚中學2025屆數(shù)學高一下期末檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的前項和為.且,則()A. B. C. D.2.若,則與夾角的余弦值為()A. B. C. D.13.在中,,,則的最大值為A. B. C. D.4.如圖,在圓內隨機撒一把豆子,統(tǒng)計落在其內接正方形中的豆子數(shù)目,若豆子總數(shù)為n,落在正方形內的豆子數(shù)為m,則圓周率π的估算值是()A.nmB.2nmC.3n5.下列函數(shù)中,既是偶函數(shù),又在上遞增的函數(shù)的個數(shù)是().①;②;③;④向右平移后得到的函數(shù).A. B. C. D.6.已知直線a2x+y+2=0與直線bx-(a2+1)y-1=0互相垂直,則|ab|的最小值為A.5 B.4 C.2 D.17.若,且,則xy的最大值為()A. B. C. D.8.已知集合,,則A. B. C. D.9.已知數(shù)列是公差不為零的等差數(shù)列,函數(shù)是定義在上的單調遞增的奇函數(shù),數(shù)列的前項和為,對于命題:①若數(shù)列為遞增數(shù)列,則對一切,②若對一切,,則數(shù)列為遞增數(shù)列③若存在,使得,則存在,使得④若存在,使得,則存在,使得其中正確命題的個數(shù)為()A.0 B.1 C.2 D.310.已知表示兩條不同的直線,表示三個不同的平面,給出下列四個命題:①,,,則;②,,,則;③,,,則;④,,,則其中正確的命題個數(shù)是()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知,則____________.12.若,且,則=_______.13.若關于x的不等式的解集是,則_________.14.已知,則__________.15.函數(shù)的定義域是________16.水平放置的的斜二測直觀圖如圖所示,已知,,則邊上的中線的實際長度為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.渦陽縣某華為手機專賣店對市民進行華為手機認可度的調查,在已購買華為手機的名市民中,隨機抽取名,按年齡(單位:歲)進行統(tǒng)計的頻數(shù)分布表和頻率分布直方圖如圖:分組(歲)頻數(shù)合計(1)求頻數(shù)分布表中、的值,并補全頻率分布直方圖;(2)在抽取的這名市民中,從年齡在、內的市民中用分層抽樣的方法抽取人參加華為手機宣傳活動,現(xiàn)從這人中隨機選取人各贈送一部華為手機,求這人中恰有人的年齡在內的概率.18.某地合作農場的果園進入盛果期,果農利用互聯(lián)網電商渠道銷售蘋果,蘋果單果直徑不同則單價不同,為了更好的銷售,現(xiàn)從該合作農場果園的蘋果樹上隨機摘下了50個蘋果測量其直徑,經統(tǒng)計,其單果直徑分布在區(qū)間內(單位:),統(tǒng)計的莖葉圖如圖所示:(Ⅰ)按分層抽樣的方法從單果直徑落在,的蘋果中隨機抽取6個,則從,的蘋果中各抽取幾個?(Ⅱ)從(Ⅰ)中選出的6個蘋果中隨機抽取2個,求這兩個蘋果單果直徑均在內的概率;(Ⅲ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率,若該合作農場的果園有20萬個蘋果約5萬千克待出售,某電商提出兩種收購方案:方案:所有蘋果均以5.5元/千克收購;方案:按蘋果單果直徑大小分3類裝箱收購,每箱裝25個蘋果,定價收購方式為:單果直徑在內按35元/箱收購,在內按45元/箱收購,在內按55元/箱收購.包裝箱與分揀裝箱費用為5元/箱(該費用由合作農場承擔).請你通過計算為該合作農場推薦收益最好的方案.19.已知函數(shù)的部分圖象如圖所示.(1)求函數(shù)的解析式,并求出的單調遞增區(qū)間;(2)若,求的值20.已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.如圖,在四棱錐中,,,,,,,分別為棱,的中點.(1)證明:平面.(2)證明:平面平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)等差數(shù)列性質可知,求得,代入可求得結果.【詳解】本題正確選項:【點睛】本題考查三角函數(shù)值的求解,關鍵是能夠靈活應用等差數(shù)列下標和的性質,屬于基礎題.2、A【解析】

根據(jù)向量的夾角公式,準確運算,即可求解,得到答案.【詳解】由向量,則與夾角的余弦值為,故選A.【點睛】本題主要考查了向量的夾角公式的應用,其中解答中熟記向量的夾角公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、A【解析】

利用正弦定理得出的外接圓直徑,并利用正弦定理化邊為角,利用三角形內角和關系以及兩角差正弦公式、配角公式化簡,最后利用正弦函數(shù)性質可得出答案.【詳解】中,,,則,,其中由于,所以,所以最大值為.故選A.【點睛】本題考查正弦定理以及兩角差正弦公式、配角公式,考查基本分析計算能力,屬于中等題.4、B【解析】試題分析:設正方形的邊長為2.則圓的半徑為2,根據(jù)幾何概型的概率公式可以得到mn=4考點:幾何概型.【方法點睛】本題題主要考查“體積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與體積有關的幾何概型問題關鍵是計算問題題的總體積(總空間)以及事件的體積(事件空間);幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.5、B【解析】

將①②③④中的函數(shù)解析式化簡,分析各函數(shù)的奇偶性及其在區(qū)間上的單調性,可得出結論.【詳解】對于①中的函數(shù),該函數(shù)為偶函數(shù),當時,,該函數(shù)在區(qū)間上不單調;對于②中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調遞減;對于③中的函數(shù),該函數(shù)為偶函數(shù),且在區(qū)間上單調遞增;對于④,將函數(shù)向右平移后得到的函數(shù)為,該函數(shù)為奇函數(shù),且當時,,則函數(shù)在區(qū)間上不單調.故選:B.【點睛】本題考查三角函數(shù)單調性與奇偶性的判斷,同時也考查了三角函數(shù)的相位變換,熟悉正弦、余弦和正切函數(shù)的基本性質是判斷的關鍵,考查推理能力,屬于中等題.6、C【解析】試題分析:由已知有,∴,∴.考點:1.兩直線垂直的充要條件;2.均值定理的應用.7、D【解析】

利用基本不等式可直接求得結果.【詳解】(當且僅當時取等號)的最大值為故選:【點睛】本題考查利用基本不等式求解積的最大值的問題,屬于基礎題.8、C【解析】分析:由題意先解出集合A,進而得到結果。詳解:由集合A得,所以故答案選C.點睛:本題主要考查交集的運算,屬于基礎題。9、C【解析】

利用函數(shù)奇偶性和單調性,通過舉例和證明逐項分析.【詳解】①取,,則,故①錯;②對一切,,則,又因為是上的單調遞增函數(shù),所以,若遞減,設,且,且,所以,則,則,與題設矛盾,所以遞增,故②正確;③取,則,,令,所以,但是,故③錯誤;④因為,所以,所以,則,則,則存在,使得,故④正確.故選:C.【點睛】本題函數(shù)性質與數(shù)列的綜合,難度較難.分析存在性問題時,如果比較難分析,也可以從反面去舉例子說明命題不成立,這也是一種常規(guī)思路.10、B【解析】

根據(jù)線面和線線平行與垂直的性質逐個判定即可.【詳解】對①,,,不一定有,故不一定成立.故①錯誤.對②,令為底面為直角三角形的直三棱柱的三個側面,且,,,但此時,故不一定成立.故②錯誤.對③,,,,則成立.故③正確.對④,若,,則,或,又,則.故④正確.綜上,③④正確.故選:B【點睛】本題主要考查了根據(jù)線面、線線平行與垂直的性質判斷命題真假的問題,需要根據(jù)題意舉出反例或者根據(jù)判定定理判定,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、84【解析】

根據(jù)余弦定理以及同角公式求得,再根據(jù)面積公式可得答案.【詳解】由余弦定理可得,又,所以,所以.故答案為:84【點睛】本題考查了余弦定理,考查了同角公式,考查了三角形的面積公式,屬于基礎題.12、【解析】

由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,熟練掌握其基本關系是解題的關鍵.13、-14【解析】

由不等式的解集求出對應方程的實數(shù)根,利用根與系數(shù)的關系求出的值,從而可得結果.【詳解】不等式的解集是,所以對應方程的實數(shù)根為和,且,由根與系數(shù)的關系得,解得,,故答案為.【點睛】本題主要考查一元二次不等式的解集與一元二次不等式的根之間的關系,以及韋達定理的應用,屬于簡單題.14、【解析】15、【解析】

根據(jù)的值域為求解即可.【詳解】由題.故定義域為.故答案為:【點睛】本題主要考查了反三角函數(shù)的定義域,屬于基礎題型.16、【解析】

利用斜二測直觀圖的畫圖規(guī)則,可得為一個直角三角形,且,得,從而得到邊上的中線的實際長度為.【詳解】利用斜二測直觀圖的畫圖規(guī)則,平行于軸或在軸上的線段,長度保持不變;平行于軸或在軸上的線段,長度減半,利用逆向原則,所以為一個直角三角形,且,所以,所以邊上的中線的實際長度為.【點睛】本題考查斜二測畫法的規(guī)則,考查基本識圖、作圖能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),頻率分布直方圖見解析;(2).【解析】

(1)根據(jù)分布直方圖計算出第二個矩形的面積,乘以可得出的值,再由頻數(shù)之和為得出的值,利用頻數(shù)除以樣本容量得出第四個矩形的面積,并計算出第四個矩形的高,于此可補全頻率分布直方圖;(2)先計算出人中年齡在、內的市民人數(shù)分別為、,將年齡在的位市民記為,年齡在的位市民記為、、、,記事件恰有人的年齡在內,列舉出所有的基本事件,并確定事件所包含的基本事件數(shù),利用古典概型的概率公式可計算出事件的概率.【詳解】(1)由頻數(shù)分布表和頻率分布直方圖可知,解得.頻率分布直方圖中年齡在內的人數(shù)為人,對應的為,所以補全的頻率分布直方圖如下圖所示:(2)由頻數(shù)分布表知,在抽取的人中,年齡在內的市民的人數(shù)為,記為,年齡在內的市民的人數(shù)為,分別記為、、、.從這人中任取人的所有基本事件為:、、、、、、、、、,共個基本事件.記“恰有人的年齡在內”為事件,則所包含的基本事件有個:、、、,所以這人中恰有人的年齡在內的概率為.【點睛】本題考查頻率分布直方圖和頻率分布表的應用,同時也考查了古典概型概率公式計算概率,在列舉基本事件時要遵循不重不漏的基本原則,常用的是列舉法,也可以利用樹狀圖來輔助理解,考查運算求解能力,屬于中等題.18、(Ⅰ)4個;(Ⅱ);(Ⅲ)方案是【解析】

(Ⅰ)單果直徑落在,,,的蘋果個數(shù)分別為6,12,分層抽樣的方法從單果直徑落在,,,的蘋果中隨機抽取6個,單果直徑落在,,,的蘋果分別抽取2個和4個;(Ⅱ)從這6個蘋果中隨機抽取2個,基本事件總數(shù),這兩個蘋果單果直徑均在,內包含的基本事件個數(shù),由此能求出這兩個蘋果單果直徑均在,內的概率;(Ⅲ)分別求出按方案與方案該合作農場收益,比較大小得結論.【詳解】(Ⅰ)由莖葉圖可知,單果直徑落在,的蘋果分別為6個,12個,依題意知抽樣比為,所以單果直徑落在的蘋果抽取個數(shù)為個,單果直徑落在的蘋果抽取個數(shù)為個(Ⅱ)記單果直徑落在的蘋果為,,記單果直徑落在的蘋果為,若從這6個蘋果中隨機抽取2個,則所有可能結果為:,,,,,,,,,,,,,,,即基本事件的總數(shù)為15個.這兩個蘋果單果直徑均落在內包含的基本事件個數(shù)為6個,所以這兩個蘋果單果直徑均落在內的概率為.(Ⅲ)按方案:該合作農場收益為:(萬元);按方案:依題意可知合作農場的果園共有萬箱,即8000箱蘋果,則該合作農場收益為:元,即為31.36萬元因為,所以為該合作農場推薦收益最好的方案是.【點睛】本題考查概率、最佳方案的確定,考查莖葉圖等基礎知識,考查運算求解能力,是中檔題.19、(1);遞增區(qū)間為;(2)【解析】

(1)由圖可知其函數(shù)的周期滿足,從而求得,進而求得,再代入點的坐標可得值,從而求得解析式;解不等式,可得函數(shù)的單調增區(qū)間;(2)由題意可得,結合,得到,利用平方關系,求得,之后利用差角余弦公式求得結果.【詳解】(1)設函數(shù)的周期為,由圖可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的遞增區(qū)間為;(2),又,∴,∴;∴.【點睛】該題考查的是有關三角函數(shù)的問題,涉及到的知識點有根據(jù)圖象確定函數(shù)解析式,求正弦型函數(shù)的單調區(qū)間,同角三角函數(shù)關系式,利用整體角思維,結合差角正弦公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論