2022年安徽省省級示范高中高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2022年安徽省省級示范高中高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2022年安徽省省級示范高中高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2022年安徽省省級示范高中高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2022年安徽省省級示范高中高三數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個(gè)幾何體的體積是()A. B. C.16 D.322.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.83.已知向量,,若,則()A. B. C.-8 D.84.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣126.點(diǎn)為棱長是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長度為()A. B. C. D.7.若函數(shù)在時(shí)取得最小值,則()A. B. C. D.8.已知函數(shù)滿足:當(dāng)時(shí),,且對任意,都有,則()A.0 B.1 C.-1 D.9.已知集合,,則()A. B.C.或 D.10.已知集合,,則()A. B. C. D.11.五名志愿者到三個(gè)不同的單位去進(jìn)行幫扶,每個(gè)單位至少一人,則甲、乙兩人不在同一個(gè)單位的概率為()A. B. C. D.12.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的最小值為2,則_________.14.已知直角坐標(biāo)系中起點(diǎn)為坐標(biāo)原點(diǎn)的向量滿足,且,,,存在,對于任意的實(shí)數(shù),不等式,則實(shí)數(shù)的取值范圍是______.15.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.16.(5分)已知函數(shù),則不等式的解集為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點(diǎn),是棱上的點(diǎn)且,,,.求證:平面平面以;求二面角的大小.18.(12分)如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,,是線段的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.19.(12分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82820.(12分)運(yùn)輸一批海鮮,可在汽車、火車、飛機(jī)三種運(yùn)輸工具中選擇,它們的速度分別為60千米/小時(shí)、120千米/小時(shí)、600千米/小時(shí),每千米的運(yùn)費(fèi)分別為20元、10元、50元.這批海鮮在運(yùn)輸過程中每小時(shí)的損耗為m元(),運(yùn)輸?shù)穆烦虨镾(千米).設(shè)用汽車、火車、飛機(jī)三種運(yùn)輸工具運(yùn)輸時(shí)各自的總費(fèi)用(包括運(yùn)費(fèi)和損耗費(fèi))分別為(元)、(元)、(元).(1)請分別寫出、、的表達(dá)式;(2)試確定使用哪種運(yùn)輸工具總費(fèi)用最省.21.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:22.(10分)已知函數(shù).(1)解不等式:;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長為4,所以體積是,選A.2、A【解析】

依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題.3、B【解析】

先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長的運(yùn)算,屬于基礎(chǔ)題.4、B【解析】

由共軛復(fù)數(shù)的定義得到,通過三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因?yàn)?,,所以在?fù)平面內(nèi)對應(yīng)的點(diǎn)位于第二象限.故選:B【點(diǎn)睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。6、C【解析】

設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.7、D【解析】

利用輔助角公式化簡的解析式,再根據(jù)正弦函數(shù)的最值,求得在函數(shù)取得最小值時(shí)的值.【詳解】解:,其中,,,故當(dāng),即時(shí),函數(shù)取最小值,所以,故選:D【點(diǎn)睛】本題主要考查輔助角公式,正弦函數(shù)的最值的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】

由題意可知,代入函數(shù)表達(dá)式即可得解.【詳解】由可知函數(shù)是周期為4的函數(shù),.故選:C.【點(diǎn)睛】本題考查了分段函數(shù)和函數(shù)周期的應(yīng)用,屬于基礎(chǔ)題.9、D【解析】

首先求出集合,再根據(jù)補(bǔ)集的定義計(jì)算可得;【詳解】解:∵,解得∴,∴.故選:D【點(diǎn)睛】本題考查補(bǔ)集的概念及運(yùn)算,一元二次不等式的解法,屬于基礎(chǔ)題.10、B【解析】

求出集合,利用集合的基本運(yùn)算即可得到結(jié)論.【詳解】由,得,則集合,所以,.故選:B.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,利用函數(shù)的性質(zhì)求出集合是解決本題的關(guān)鍵,屬于基礎(chǔ)題.11、D【解析】

三個(gè)單位的人數(shù)可能為2,2,1或3,1,1,求出甲、乙兩人在同一個(gè)單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個(gè)單位的人數(shù)可能為2,2,1或3,1,1;基本事件總數(shù)有種,若為第一種情況,且甲、乙兩人在同一個(gè)單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個(gè)單位,共有種,故甲、乙兩人在同一個(gè)單位的概率為,故甲、乙兩人不在同一個(gè)單位的概率為.故選:D.【點(diǎn)睛】本題考查古典概型的概率公式的計(jì)算,涉及到排列與組合的應(yīng)用,在正面情況較多時(shí),可以先求其對立事件,即甲、乙兩人在同一個(gè)單位的概率,本題有一定難度.12、A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無零點(diǎn),不符合題意,排除D;然后,對剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先利用絕對值的意義去掉絕對值符號,之后再結(jié)合后邊的函數(shù)解析式,對照函數(shù)值等于2的時(shí)候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點(diǎn),從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當(dāng)或時(shí)是分界點(diǎn),結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點(diǎn),故,解得,故答案是.【點(diǎn)睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、【解析】

由題意可設(shè),,,由向量的坐標(biāo)運(yùn)算,以及恒成立思想可設(shè),的最小值即為點(diǎn),到直線的距離,求得,可得不大于.【詳解】解:,且,可設(shè),,,,可得,可得的終點(diǎn)均在直線上,由于為任意實(shí)數(shù),可得時(shí),的最小值即為點(diǎn)到直線的距離,可得,對于任意的實(shí)數(shù),不等式,可得,故答案為:.【點(diǎn)睛】本題主要考查向量的模的求法,以及兩點(diǎn)的距離的運(yùn)用,考查直線方程的運(yùn)用,以及點(diǎn)到直線的距離,考查運(yùn)算能力,屬于中檔題.15、【解析】

先把復(fù)數(shù)進(jìn)行化簡,然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).16、【解析】

易知函數(shù)的定義域?yàn)椋?,則是上的偶函數(shù).由于在上單調(diào)遞增,而在上也單調(diào)遞增,由復(fù)合函數(shù)的單調(diào)性知在上單調(diào)遞增,又在上單調(diào)遞增,故知在上單調(diào)遞增.令,知,則不等式可化為,即,可得,又,是偶函數(shù),可得,由在上單調(diào)遞增,可得,則,解得,故不等式的解集為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析;.【解析】

推導(dǎo)出,,從而平面,由此證明平面平面以;以為原點(diǎn),建立空間直角坐標(biāo)系,利用法向量求出二面角的大小.【詳解】解:,,為的中點(diǎn),四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點(diǎn),.平面平面,且平面平面,平面.如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則平面的一個(gè)法向量為,,,,,設(shè),則,,,,,在平面中,,,設(shè)平面的法向量為,則,即,平面的一個(gè)法向量為,,由圖知二面角為銳角,所以所求二面角大小為.【點(diǎn)睛】本題考查面面垂直的證明,考查二面角的大小的求法,考查了空間向量的應(yīng)用,屬于中檔題.18、(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點(diǎn)為,根據(jù)幾何關(guān)系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點(diǎn),連接,.如下圖所示:因?yàn)?,分別是線段和的中點(diǎn),所以是梯形的中位線,所以.又,所以.因?yàn)椋?,所以四邊形為平行四邊形,所?所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因?yàn)?,且平面,故可以為原點(diǎn),的方向?yàn)檩S正方向建立如圖所示的空間直角坐標(biāo)系,如下圖所示:不妨設(shè),則,所以,,,,.所以,,.設(shè)平面的法向量為,則所以可取.設(shè)直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點(diǎn)睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.19、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】

(1)根據(jù)列聯(lián)表和獨(dú)立性檢驗(yàn)的公式計(jì)算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因?yàn)闃颖局谐鲂胁淮骺谡值木用裼?0人,其中年輕人有10人,用樣本估計(jì)總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨(dú)立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計(jì)總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點(diǎn)睛】本題主要考查獨(dú)立性檢驗(yàn)及獨(dú)立重復(fù)事件的概率求法,難度一般.20、(1),,.(2)當(dāng)時(shí),此時(shí)選擇火車運(yùn)輸費(fèi)最?。划?dāng)時(shí),此時(shí)選擇飛機(jī)運(yùn)輸費(fèi)用最?。划?dāng)時(shí),此時(shí)選擇火車或飛機(jī)運(yùn)輸費(fèi)用最省.【解析】

(1)將運(yùn)費(fèi)和損耗費(fèi)相加得出總費(fèi)用的表達(dá)式.(2)作差比較、的大小關(guān)系得出結(jié)論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關(guān)系即可,令,故當(dāng),即時(shí),,即,此時(shí)選擇火車運(yùn)輸費(fèi)最省,當(dāng),即時(shí),,即,此時(shí)選擇飛機(jī)運(yùn)輸費(fèi)用最省.當(dāng),即時(shí),,,此時(shí)選擇火車或飛機(jī)運(yùn)輸費(fèi)用最省.【點(diǎn)睛】本題考查了常見函數(shù)的模型,考查了分類討論的思想,屬于基礎(chǔ)題.21、(1)遞減區(qū)間為(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論