版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的圖像上有且僅有四個(gè)不同的關(guān)于直線對(duì)稱的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.2.已知方程表示的曲線為的圖象,對(duì)于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個(gè)零點(diǎn);③的最大值為;④若函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則由方程所確定;則正確命題序號(hào)為()A.①③ B.②③ C.①④ D.②④3.是定義在上的增函數(shù),且滿足:的導(dǎo)函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.4.已知,且,則在方向上的投影為()A. B. C. D.5.某幾何體的三視圖如圖所示,若圖中小正方形的邊長(zhǎng)均為1,則該幾何體的體積是A. B. C. D.6.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.7.已知,,,則的大小關(guān)系為()A. B. C. D.8.函數(shù)的對(duì)稱軸不可能為()A. B. C. D.9.函數(shù)的部分圖象大致為()A. B.C. D.10.函數(shù)(),當(dāng)時(shí),的值域?yàn)?,則的范圍為()A. B. C. D.11.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.1212.國(guó)家統(tǒng)計(jì)局服務(wù)業(yè)調(diào)查中心和中國(guó)物流與采購(gòu)聯(lián)合會(huì)發(fā)布的2018年10月份至2019年9月份共12個(gè)月的中國(guó)制造業(yè)采購(gòu)經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯(cuò)誤的是()A.12個(gè)月的PMI值不低于50%的頻率為B.12個(gè)月的PMI值的平均值低于50%C.12個(gè)月的PMI值的眾數(shù)為49.4%D.12個(gè)月的PMI值的中位數(shù)為50.3%二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.在中,已知,,則A的值是______.15.若,則的最小值為________.16.過拋物線C:()的焦點(diǎn)F且傾斜角為銳角的直線l與C交于A,B兩點(diǎn),過線段的中點(diǎn)N且垂直于l的直線與C的準(zhǔn)線交于點(diǎn)M,若,則l的斜率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.18.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.19.(12分)如圖,已知橢圓經(jīng)過點(diǎn),且離心率,過右焦點(diǎn)且不與坐標(biāo)軸垂直的直線與橢圓相交于兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右頂點(diǎn)為,線段的中點(diǎn)為,記直線的斜率分別為,求證:為定值.20.(12分)選修4-5:不等式選講設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)改革開放年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識(shí)強(qiáng).求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;已知交通安全意識(shí)強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)用分層抽樣的方式從得分在分以下的樣本中抽取人,再?gòu)娜酥须S機(jī)選取人對(duì)未來(lái)一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中22.(10分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)對(duì)稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個(gè)不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點(diǎn),通過數(shù)形結(jié)合的方式可確定;利用過某一點(diǎn)曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對(duì)稱的直線方程為:原題等價(jià)于與有且僅有四個(gè)不同的交點(diǎn)由可知,直線恒過點(diǎn)當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點(diǎn)的曲線的兩條切線,切點(diǎn)分別為由圖象可知,當(dāng)時(shí),與有且僅有四個(gè)不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)直線與曲線交點(diǎn)個(gè)數(shù)確定參數(shù)范圍的問題;涉及到過某一點(diǎn)的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對(duì)稱性將問題轉(zhuǎn)化為直線與曲線交點(diǎn)個(gè)數(shù)的問題,通過確定直線恒過的定點(diǎn),采用數(shù)形結(jié)合的方式來(lái)進(jìn)行求解.2、C【解析】
分四類情況進(jìn)行討論,然后畫出相對(duì)應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時(shí),,此時(shí)不存在圖象;(2)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(3)當(dāng)時(shí),,此時(shí)為實(shí)軸為軸的雙曲線一部分;(4)當(dāng)時(shí),,此時(shí)為圓心在原點(diǎn),半徑為1的圓的一部分;畫出的圖象,由圖象可得:對(duì)于①,在上單調(diào)遞減,所以①正確;對(duì)于②,函數(shù)與的圖象沒有交點(diǎn),即沒有零點(diǎn),所以②錯(cuò)誤;對(duì)于③,由函數(shù)圖象的對(duì)稱性可知③錯(cuò)誤;對(duì)于④,函數(shù)和圖象關(guān)于原點(diǎn)對(duì)稱,則中用代替,用代替,可得,所以④正確.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點(diǎn)概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.3、D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構(gòu)建新函數(shù),利用導(dǎo)數(shù)可得為上的增函數(shù),從而可得正確的選項(xiàng).【詳解】因?yàn)槭嵌x在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點(diǎn)和題設(shè)中給出的原函數(shù)與導(dǎo)數(shù)的關(guān)系構(gòu)建新函數(shù),本題屬于中檔題.4、C【解析】
由向量垂直的向量表示求出,再由投影的定義計(jì)算.【詳解】由可得,因?yàn)?,所以.故在方向上的投影為.故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.5、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點(diǎn)睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.6、C【解析】
根據(jù)在關(guān)于對(duì)稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.7、A【解析】
根據(jù)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)椋?因?yàn)?,所以,因?yàn)?,為增函?shù),所以所以,故選:A.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.8、D【解析】
由條件利用余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.【詳解】對(duì)于函數(shù),令,解得,當(dāng)時(shí),函數(shù)的對(duì)稱軸為,,.故選:D.【點(diǎn)睛】本題主要考查余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.9、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負(fù)情況。【詳解】,故奇函數(shù),四個(gè)圖像均符合。當(dāng)時(shí),,,排除C、D當(dāng)時(shí),,,排除A。故選B。【點(diǎn)睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。10、B【解析】
首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實(shí)數(shù)的不等式,解不等式即可求得范圍.【詳解】因?yàn)?,所以,若值域?yàn)?,所以只需,?故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).11、A【解析】
由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來(lái),繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.12、D【解析】
根據(jù)圖形中的信息,可得頻率、平均值的估計(jì)、眾數(shù)、中位數(shù),從而得到答案.【詳解】對(duì)A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個(gè),所以12個(gè)月的PMI值不低于50%的頻率為,故A正確;對(duì)B,由圖可以看出,PMI值的平均值低于50%,故B正確;對(duì)C,12個(gè)月的PMI值的眾數(shù)為49.4%,故C正確,;對(duì)D,12個(gè)月的PMI值的中位數(shù)為49.6%,故D錯(cuò)誤故選:D.【點(diǎn)睛】本題考查頻率、平均值的估計(jì)、眾數(shù)、中位數(shù)計(jì)算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由數(shù)量積的運(yùn)算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點(diǎn)睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運(yùn)算律是解題關(guān)鍵.14、【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點(diǎn)睛】本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.15、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件?!驹斀狻坑深}意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。16、【解析】
分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為,,,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為,,,由拋物線的定義知,,,因?yàn)椋?,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點(diǎn)睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)y2=6x(2).【解析】
(1)根據(jù)拋物線定義,寫出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點(diǎn)坐標(biāo)表示出|AB|和點(diǎn)到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點(diǎn)F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點(diǎn)為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個(gè)解,所以AB的垂直平分線與x軸的交點(diǎn)C為定點(diǎn),且點(diǎn)C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個(gè)實(shí)根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時(shí)等號(hào)成立,所以S△ABC的最大值為.【點(diǎn)睛】此題考查根據(jù)焦點(diǎn)和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達(dá)定理整體代入,拋物線中需要考慮設(shè)點(diǎn)坐標(biāo)的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.18、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對(duì)于任意實(shí)數(shù)都成立,所以.此時(shí),則.由,解得.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線,有且只有兩個(gè)公共點(diǎn)”.對(duì)函數(shù)求導(dǎo),得.由,解得,.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.又因?yàn)?,,,,所以?dāng)或時(shí),直線與曲線,有且只有兩個(gè)公共點(diǎn).即當(dāng)或時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn).【點(diǎn)睛】利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.19、(1);(2)詳見解析.【解析】
(1)由橢圓離心率、系數(shù)關(guān)系和已知點(diǎn)坐標(biāo)構(gòu)建方程組,求得,代入標(biāo)準(zhǔn)方程中即可;(2)依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),,通過聯(lián)立直線方程與橢圓方程化簡(jiǎn)整理和中點(diǎn)的坐標(biāo)表示用含k的表達(dá)式表示,,進(jìn)而表示;由韋達(dá)定理表示根與系數(shù)的關(guān)系進(jìn)而表示用含k的表達(dá)式表示,最后做比即得證.【詳解】(1)設(shè)橢圓的焦距為,則,即,所以.依題意,,即,解得,所以,.所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明:依題意,直線的斜率存在,且不為0,設(shè)其為,則直線的方程為,設(shè),.與橢圓聯(lián)立整理得,故所以,,所以.又,所以為定值,得證.【點(diǎn)睛】本題考查由離心率求橢圓的標(biāo)準(zhǔn)方程,還考查了橢圓中的定值問題,屬于較難題.20、(1);(2)【解析】
(1)當(dāng)時(shí),將原不等式化簡(jiǎn)后兩邊平方,由此解出不等式的解集.(2)對(duì)分成三種情況,利用零點(diǎn)分段法去絕對(duì)值,將表示為分段函數(shù)的形式,根據(jù)單調(diào)性求得的取值范圍.【詳解】(1)時(shí),可得,即,化簡(jiǎn)得:,所以不等式的解集為.(2)①當(dāng)時(shí),由函數(shù)單調(diào)性可得,解得;②當(dāng)時(shí),,所以符合題意;③當(dāng)時(shí),由函數(shù)單調(diào)性可得,,解得綜上,實(shí)數(shù)的取值范圍為【點(diǎn)睛】本小題主要考查含有絕對(duì)值不等式的解法,考查不等式恒成立問題的求解,屬于中檔題.21、,概率為;列聯(lián)表詳見解析,有的把握認(rèn)為交通安全意識(shí)與性別有關(guān);.【解析】
根據(jù)頻率和為列方程求得的值,計(jì)算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計(jì)算的值,對(duì)照臨界值得出結(jié)論;用分層抽樣法求得抽取各分?jǐn)?shù)段人數(shù),用列舉法求出基本事件數(shù),計(jì)算所求的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴州大學(xué)《舞臺(tái)實(shí)踐與服務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州財(cái)經(jīng)職業(yè)學(xué)院《固態(tài)照明與顯示技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年黑龍江省安全員B證考試題庫(kù)附答案
- 2025山東省建筑安全員B證考試題庫(kù)
- 貴陽(yáng)信息科技學(xué)院《中小學(xué)生心理輔導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《幼兒科學(xué)教育與活動(dòng)指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州幼兒師范高等??茖W(xué)?!锻鈬?guó)文學(xué)史1》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025湖北省安全員知識(shí)題庫(kù)
- 2025福建省安全員B證考試題庫(kù)及答案
- 2025江西省建筑安全員-B證考試題庫(kù)附答案
- 上海市浦東新區(qū)2023-2024學(xué)年一年級(jí)上學(xué)期期末考試數(shù)學(xué)試題
- 足球教練員管理制度模版
- IQC來(lái)料檢驗(yàn)記錄表
- 成長(zhǎng)生涯發(fā)展展示
- 申報(bào)市級(jí)高技能人才培訓(xùn)基地申報(bào)工作匯報(bào)
- 2024年高考作文素材積累:人民日?qǐng)?bào)9大主題時(shí)評(píng)
- 設(shè)立出國(guó)留學(xué)服務(wù)公司商業(yè)計(jì)劃書
- 法院安保工作管理制度
- 2023年簽證專員年度總結(jié)及下一年規(guī)劃
- 國(guó)培教師個(gè)人成長(zhǎng)案例3000字
- 員工素質(zhì)教育課件
評(píng)論
0/150
提交評(píng)論