版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第二十八章銳角三角函數(shù)
28.2解直角三角形及其應(yīng)用
28.2.2應(yīng)用舉例
課時(shí)2俯角、仰角問題
【知識與技能】
1.了解仰角、俯角、方位角、坡度、坡角等有關(guān)概念,知道坡度與坡角之間的
關(guān)系.
2.經(jīng)歷對實(shí)際問題的探究,會利用解直角三角形的知識解決實(shí)際問題.
3.在具體情景中從數(shù)學(xué)的角度發(fā)現(xiàn)問題和提出問題,并綜合運(yùn)用數(shù)學(xué)知識解決
簡單實(shí)際問題.
【過程與方法】
1.通過畫示意圖,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,發(fā)展學(xué)生的抽象概括能力,提高
應(yīng)用數(shù)學(xué)知識解決實(shí)際問題的能力.
2.經(jīng)歷從實(shí)際問題中建立數(shù)學(xué)模型的過程,增強(qiáng)應(yīng)用意識,體會數(shù)形結(jié)合思想
的應(yīng)用.
3.通過探究將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,培養(yǎng)學(xué)生分析問題和解決問題
的能力,培養(yǎng)學(xué)生思維能力的靈活性.
【情感態(tài)度與價(jià)值觀】
1.學(xué)生積極參與探索活動(dòng),并在探索過程中發(fā)表自己的見解,體會三角函數(shù)是
解決實(shí)際問題的有效工具.
2.通過探索三角函數(shù)在實(shí)際問題中的應(yīng)用,感受數(shù)學(xué)來源于生活又應(yīng)用于生活
以及勇于探索的創(chuàng)新精神.
3.讓學(xué)生在自主探索、合作交流中獲得成功的體驗(yàn),建立自信心,讓學(xué)生在解
決問題的過程中體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣.
能根據(jù)題意畫出示意圖,將實(shí)際問題的數(shù)量關(guān)系轉(zhuǎn)化為直角三角形元素之間的
關(guān)系.
正確理解題意,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型的建模過程.
多媒體課件.
導(dǎo)入一:
【復(fù)習(xí)提問】
1.如圖,在RtzX4比中,Z/>90°,N4AB,NC的對邊分別為a,b,c.
(1)三邊a,6,c有什么關(guān)系?
(2)N4N6有怎樣的關(guān)系?
(3)邊與角之間有怎樣的關(guān)系?
2.解直角三角形應(yīng)具備怎樣的條件?
【師生活動(dòng)】學(xué)生回答問題,教師點(diǎn)評歸納.
導(dǎo)入二:
如圖,要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的
角a一般要滿足50°WaW75°.現(xiàn)有一架長6m的梯子.
(1)使用這架梯子最高可以安全攀上多高的墻?
⑵當(dāng)梯子底端距離墻面2.4m時(shí),a等于多少度?此時(shí)人能否安全使用這架梯
子?
【師生活動(dòng)】學(xué)生小組內(nèi)討論解題思路,小組代表回答解題思路,教師巡視
中幫助有困難的學(xué)生,對學(xué)生的回答作出點(diǎn)評,然后導(dǎo)出新課.
[設(shè)計(jì)意佟通過復(fù)習(xí)解直角三角形的有關(guān)知識,為本節(jié)課的用解直角三角形
解決實(shí)際問題做好鋪墊,以舊引新,幫助學(xué)生建立新舊知識間的聯(lián)系,以解決生活
實(shí)際問題引出新課,激發(fā)學(xué)生的好奇心和求知欲,感受數(shù)學(xué)應(yīng)用的意義.
[過渡語]剛才的導(dǎo)入中用解直角三角形的知識解決了實(shí)際生活問題,在生
活實(shí)際中還有許多問題可以用解直角三角形的知識解決,讓我們一起去探究吧!
一、活動(dòng)一
畫2012年6月18日,“神舟”九號載人航天飛船與“天宮”一號目標(biāo)飛
行器成功實(shí)現(xiàn)交會對接.“神舟”九號與“天宮”一號的組合體在離地球表面
343km的圓形軌道上運(yùn)行,如圖,當(dāng)組合體運(yùn)行到地球表面尸點(diǎn)的正上方時(shí),從中
能直接看到的地球表面最遠(yuǎn)的點(diǎn)在什么位置?最遠(yuǎn)點(diǎn)與。點(diǎn)的距離是多少(地球
半徑約為6400km,“取3.142,結(jié)果取整數(shù))?
思路一
師生合作探究:
⑴從組合體上最遠(yuǎn)能直接看到的地球上的點(diǎn),應(yīng)該是視線與地球相切時(shí)的切
占
八、、,
(2)根據(jù)題意畫出平面圖形.
(3)所要求的距離是圖形中的哪條線段的長度?
(4)已知中有哪些條件?求弧長需要知道哪些條件?
(5)弧所對的圓心角在哪個(gè)三角形中?你能求出這個(gè)角的度數(shù)嗎?
(如圖②,0。表示地球,點(diǎn)/是組合體的位置,用是的切線,切點(diǎn)0是從組
合體中觀測地球時(shí)的最遠(yuǎn)點(diǎn).弧網(wǎng)的長就是地面上P,0兩點(diǎn)間的距離.為計(jì)算弧
切的長需先求出
N尸00(即a)的度數(shù))
【師生活動(dòng)】教師通過提出的問題引導(dǎo)學(xué)生分析思考,指導(dǎo)學(xué)生畫出平面圖
形,分析已知條件和所求的結(jié)論,師生共同分析題意及解題思路后,學(xué)生獨(dú)立完成
并板書解題過程.
【課件展示】解:設(shè)在圖②中,F(xiàn)Q是00的切線,XF0Q是直角三角
形.
0Q6400
Vcosa=0F=6400+343%0.9491,
36°.
18.36Ji18.36X3.142
弧尸0的長為180X6400七180X6400-2051(km).
由此可知,當(dāng)組合體在P點(diǎn)正上方時(shí),從中觀測地球表面時(shí)的最遠(yuǎn)點(diǎn)距離尸點(diǎn)
約2051km.
思路二
教師引導(dǎo)思考:
(1)要解決實(shí)際問題,首先要做什么?(將實(shí)際問題抽象成數(shù)學(xué)問題)
(2)如何根據(jù)題意畫出平面圖形?(地球平面圖形是圓,組合體近似看作點(diǎn))
(3)從組合體中看到的地球表面最遠(yuǎn)的點(diǎn)在什么位置?(過點(diǎn)作圓的切線,切點(diǎn)
即為所求)
學(xué)生操作:畫出平面示意圖.
(4)最遠(yuǎn)點(diǎn)與尸點(diǎn)的距離在示意圖中指的是什么的長?
(5)如何求這段距離?和圓有什么關(guān)系?
(6)如何將所需數(shù)據(jù)轉(zhuǎn)化為解直角三角形的知識?
【師生活動(dòng)】學(xué)生嘗試根據(jù)圖形寫出解題思路,教師巡視過程中及時(shí)幫助有
困難的學(xué)生,課件展示解題過程,規(guī)范解題格式.
【課件展示】解答同思路一.
[設(shè)計(jì)意圖]引導(dǎo)學(xué)生畫出示意圖,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,分析實(shí)際問
題中的數(shù)量關(guān)系,利用解直角三角形的知識解決實(shí)際問題,讓學(xué)生經(jīng)歷作圖、分
析過程,體會數(shù)形結(jié)合思想在數(shù)學(xué)中的應(yīng)用,提高學(xué)生分析問題、解決問題的能
力.
二、活動(dòng)二
【思考】平時(shí)我們觀察物體時(shí),我們的視線相對于水平線來說可有幾種情況?
【歸納】視線與水平線所成的角中,視線在水平線上方的角是仰角,視線在
水平線下方的角是俯角.
熱氣球的探測器顯示,從熱氣球看一棟樓頂部的仰角為30°,看這棟樓底部的
俯角為60°,熱氣球與樓的水平距離為120m,這棟樓有多高(結(jié)果取整數(shù))?
教師引導(dǎo)分析:
(1)如何根據(jù)題意畫出符合題意的幾何圖形?(畫出示意圖如圖)
(2)分析題意,已知條件有哪些?
(3)你能直接求出的長嗎?
(4)如何求出回的長?(線段而與線段口的和)
(5)在RtZX/劭中,能否求線段8〃的長?
(6)在口△/切中,能否求線段切的長?
【師生活動(dòng)】教師引導(dǎo)學(xué)生思考問題,然后獨(dú)立完成解題過程,教師巡視過
程中及時(shí)發(fā)現(xiàn)問題,并幫助有困難的學(xué)生解決問題,然后課件展示解題過程,規(guī)范
解題格式.
【課件展示】解:如圖,a=30°,£=60°,4M20.
BDCD
tana=AD,tan.=AD,
BD^AD-tana=120Xtan30°
=120X3=40^/3,
CD^AD?tany5=120Xtan60°
=120X/=120AA
Z.除覦6ZM0AA120V3
=160\/3^277(m).
因此,這棟樓高約為277m.
[設(shè)計(jì)意怪I]學(xué)生在教師設(shè)計(jì)的問題串的引導(dǎo)下思考,獨(dú)立完成解題過程,進(jìn)
一步讓學(xué)生體會將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的建模過程,培養(yǎng)學(xué)生建模思想,靈
活應(yīng)用解直角三角形知識解決有關(guān)線段的長的計(jì)算問題,提高學(xué)生的數(shù)學(xué)思維及
解題能力.
三、活動(dòng)三:
【思考】你能總結(jié)利用解直角三角形的有關(guān)知識解決實(shí)際問題的一般過程
嗎?
【師生活動(dòng)】學(xué)生思考后小組合作交流,共同歸納解題過程,教師對學(xué)生的
回答以鼓勵(lì)為主,將學(xué)生的回答補(bǔ)充完整.
【歸納】
⑴將實(shí)際問題抽象成數(shù)學(xué)問題(畫出示意圖,將其轉(zhuǎn)化為解直角三角形的問
題);
(2)根據(jù)問題中的條件,適當(dāng)選用銳角三角函數(shù)解直角三角形;
(3)得到數(shù)學(xué)問題的答案;
(4)得到實(shí)際問題的答案.
[設(shè)計(jì)意圖]通過例題的探究,歸納解決實(shí)際問題的一般步驟,培養(yǎng)學(xué)生歸納
總結(jié)能力和建模思想.
[知識拓展]仰角與俯角都是視線與水平線的夾角.
用解直角三角形的有關(guān)知識解決實(shí)際問題的一般過程:
⑴將實(shí)際問題抽象成數(shù)學(xué)問題(畫出示意圖,將其轉(zhuǎn)化為解直角三角形的問
題);
(2)根據(jù)問題中的條件,適當(dāng)選用銳角三角函數(shù)等解直角三角形;
(3)得到數(shù)學(xué)問題的答案;
(4)得到實(shí)際問題的答案.
第1課時(shí)
1.活動(dòng)一
2.活動(dòng)二
3.活動(dòng)三
一、教材作業(yè)
二、課后作業(yè)
【基礎(chǔ)鞏固】
1.課外活動(dòng)小組測量學(xué)校旗桿的高度.如圖,當(dāng)太陽光線與地面成30°角時(shí),測
得旗桿在地面上的影長力為24米,那么旗桿的高度是()
A.12米B.&羽米C.24米D.248米
2.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的8處,測
得樹頂A的仰角NAB0為a,則樹OA的高度為()
A.tana米B.30sin。米C.30tan。米D.30cos。米
3.如圖,小穎利用有一個(gè)銳角是30°的三角板測量一棵樹的高度,已知她與樹之
間的水平距離BE為5m,46為1.5m(即小穎的眼睛到地面的距離),那么這棵樹高
是)
3154
2.
mC.3mD.4m
4.一棵樹因雪災(zāi)于A處折斷,如圖,測得樹梢觸地點(diǎn)6到樹根。處的距離為4米,
乙ABC啊45°,樹干ZC垂直于地面,那么此樹在未折斷之前的高度約為
米(答案保留根號).
5.如凰兩建筑物的水平距離BC為18m,從A點(diǎn)測得〃點(diǎn)的俯角a為30°,測得
C點(diǎn)的俯角£為60°,則建筑物切的高度為m.
6.如圖,張華同學(xué)在學(xué)校某建筑物的。點(diǎn)處測得旗桿頂部A點(diǎn)的仰角為30°,旗
桿底部B點(diǎn)的俯角為45°.若旗桿底部8點(diǎn)到建筑物的水平距離B芹9米,旗桿
臺階高1米,求旗桿頂點(diǎn)A離地面的高度.(結(jié)果保留根號)
【能力提升】
7.如圖,小陽發(fā)現(xiàn)垂直于地面的電線桿AB的影子落在土坡的坡面CD和地面BC
上,量得CD-
8米,給20米,繆與地面成30°角,且此時(shí)測得垂直于地面的1米桿的影長為2
米,則電線桿的高度為()
A.9米B.28米C.(7+A/3)米D.(14+2/)米
C
8.如圖,在建筑平臺CD的頂部C處,測得大樹AB的頂部A的仰角為45°,測得
大樹46的底部B的俯角為30°,已知平臺CD的高度為5m,則大樹的高度為
m(結(jié)果保留根號).
9.如凰為了知道空中一靜止的廣告氣球A的高度,小宇在8處測得氣球A的仰
角為18°,他向前走了20m到達(dá)。處后,再次測得氣球A的仰角為45°,已知小
宇的眼睛距地面1.6m,則此時(shí)氣球A距地面的高度約為(結(jié)果精確到
1m).
10.某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱?該居民樓的一樓是高5米的小區(qū)
超市,超市以上是居民住房.在該樓的前面15米處要蓋一棟高20米的新樓.當(dāng)冬
季正午的陽光與水平線的夾角為32°時(shí).
(1)超市以上的居民住房采光是否受影響?為什么?
(2)若要使超市以上的居民住房采光不受影響,兩樓至少應(yīng)相距多少米?
531065
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin32°^i00,cos32°^125,tan32°^8)
【拓展探究】
11.如圖,在電線桿上的。處引拉線CE,CF固定電線桿,拉線四和地面成60°角,
在離電線桿6米的6處安置測角儀,在A處測得電線桿上。處的仰角為30。,已
知測角儀高為L5米,求拉線龍的長(結(jié)果保留根號).
AB
1.B解析:在Rt/\ABC中,小24米,tan/〃S=BC,比tan300=24X
色
工=8/(米).故選B.
0A
2.C解析:由題意得加=30米,tana二。B,.??以二獗ana=30tana(米).故選C.
3.A解析:在Rt△4切中,NCAD=30°"慶降5m,/.緇應(yīng)?tan30°=5X
35^/3
3=3(m),
華+4
:.C左CAD后CaA.3.故選A.
4.(4+4/解析:在△月%中,Z0900,;/4吐45°,:.ZA=45°,:.ZAB(=Z
A,:.AC-BC.:.Aa4.由AO+B版AR,得心JAC」+BC」=4、/^,.?.止匕樹在
未折斷之前的高度為(4+4\歷)米.
5.123解析:如圖,過點(diǎn)〃作DELAB于點(diǎn)、E,則四邊形式"是矩形.根據(jù)題意得
ZACB=£=60°,ZADE-a=30°,給18m,妗除18m,CD=BE.在Rt△ABC
中tan/4妾18Xtan60°=18,羽(m).在RtAADE中,4后龐?tanZ
4Q£M8Xtan30°=67^(m),
信法冊g]8/_6/=]2/的).
AH
6.解:如圖,作CHLAB于〃在RtAACH中,:/4次30°,tan30°=CH,
HE
A牛CH*tan30°=9X3=3/(米).在RSCHB41,,:ZHCB=^°,tan45°=CH,
:.BH=CH-tan45°=9米,.?.旗桿頂點(diǎn)力離地面的高度為濟(jì)1=10+3,羽(米).
7.D解析:如圖,延長/〃交比1的延長線于尸點(diǎn),作DE1CF于£點(diǎn).小8sin30°
=4,CB-
8cos300=4、/與.?測得1米桿的影長為2米,小2歷8,...
冊冊儂爐20+4A/3+8=28+4/,二電線桿AB的高度是
1
2(28+4A/3)=14+2,羽(米).故選D.
BE
8.(5+5")解析:作C£L48于點(diǎn)E.在Rt△旌中,除。5m,誨tan30°=5,k
在RtZS/IG'中,[盡2?tan45°=5、/%i,,力廬的/后5+5/(m).
9.11m解析:如圖,過點(diǎn)A作ADLBC于點(diǎn)D,交FG于點(diǎn)£:/力西45°,二
/斤必在
AEx
咫中,設(shè)/F長是Am,貝ijtan/l/^EF,即tanl8°=x+2C解得^9.6.由
題意知陟陷1.6,.../小9.6+1.6=11.2^11(m).
10.解:⑴受影響.理由如下:如圖,延長光線交CD子打作FEUB于£在RtA
A5F中,
AEAE575335
tanN4/2tan32°=EF=15??8,解得力£=8=98,故可得/^jE^ZO-gSnog處,即
超市以上的居民住房采光要受影響.
155
⑵要使采光不受影響,則小5米,4層15米,tan32°=EF^8解得*24米,
即要使超市以上的居民住房
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼鏡行業(yè)銷售工作總結(jié)
- 酒水飲料行業(yè)員工激勵(lì)措施
- 2024年電大電子商務(wù)概論考試綜合手冊
- 創(chuàng)意設(shè)計(jì)服務(wù)協(xié)議書(2篇)
- 易錯(cuò)點(diǎn)12 抗日戰(zhàn)爭時(shí)期的主要史實(shí)與時(shí)間-備戰(zhàn)2023年中考?xì)v史考試易錯(cuò)題(原卷版)
- 黃金卷6-【贏在中考·黃金八卷】(解析版)
- DB33T 2195-2019 家庭醫(yī)生簽約服務(wù)居家護(hù)理工作規(guī)范
- 以社區(qū)為基礎(chǔ)之糖尿病個(gè)案管理與疾病管理
- 2022-2023學(xué)年山東省聊城市高一上學(xué)期期末考試地理試題(解析版)
- 阜陽熱熔膠項(xiàng)目可行性研究報(bào)告
- 單位委托員工辦理水表業(yè)務(wù)委托書
- 【部編版】三年級語文上冊全冊《單元統(tǒng)整備課》教案
- 02S501-2 雙層井蓋圖集標(biāo)準(zhǔn)
- 廣東省湛江市寸金培才學(xué)校2022-2023學(xué)年下學(xué)期七年級數(shù)學(xué)期末試卷
- 頑固性高血壓的基因治療新進(jìn)展
- (正式版)JTT 1495-2024 公路水運(yùn)危險(xiǎn)性較大工程安全專項(xiàng)施工方案審查規(guī)程
- 停車場管理系統(tǒng)說明書
- 醫(yī)院藥劑科年終總結(jié)
- (2024年)AED(自動(dòng)體外除顫器)使用指南
- 麻醉藥品精神藥品管理
- 抽錯(cuò)血標(biāo)本護(hù)理不良事件
評論
0/150
提交評論