版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
福建省永春縣一中2025屆數(shù)學(xué)高一下期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個(gè)數(shù)是()①;②;③與平面所成的角為;④四面體的體積為.A.個(gè) B.個(gè) C.個(gè) D.個(gè)2.設(shè)x,y滿足約束條件,則z=x-y的取值范圍是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]3.如圖所示的圖形是弧三角形,又叫萊洛三角形,它是分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長為半徑畫弧得到的封閉圖形.在此圖形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自等邊三角形內(nèi)的概率是()A.32π-3 B.34π-234.連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面向上與反面向上各一次的概率是(
)A. B. C. D.5.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)6.設(shè)均為正數(shù),且,,.則()A. B. C. D.7.已知是兩條不同的直線,是三個(gè)不同的平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知,則下列不等式成立的是()A. B. C. D.9.在中,已知,則等于()A. B.C.或 D.或10.過點(diǎn)P(-2,4)作圓O:(x-2)2+(y-1)2=25的切線l,直線m:ax-3y=0與直線l平行,則直線l與m間的距離為()A.4 B.2 C.85 D.12二、填空題:本大題共6小題,每小題5分,共30分。11.已知變量x,y線性相關(guān),其一組數(shù)據(jù)如下表所示.若根據(jù)這組數(shù)據(jù)求得y關(guān)于x的線性回歸方程為,則______.x1245y5.49.610.614.412.已知無窮等比數(shù)列的首項(xiàng)為,公比為q,且,則首項(xiàng)的取值范圍是________.13.已知公式,,借助這個(gè)公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.14.某工廠甲、乙、丙三個(gè)車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣的方法抽取了一個(gè)容量為n的樣本進(jìn)行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=.15.已知球的表面積為4,則該球的體積為________.16.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.函數(shù)在一個(gè)周期內(nèi)的圖象如圖所示,為圖象的最高點(diǎn),、為圖象與軸的交點(diǎn),且為正三角形.(1)求的值及函數(shù)的值域;(2)若,且,求的值.18.已知菱形ABCD的邊長為2,M為BD上靠近D的三等分點(diǎn),且線段.(1)求的值;(2)點(diǎn)P為對角線BD上的任意一點(diǎn),求的最小值.19.已知函數(shù)的定義域?yàn)镽(1)求的取值范圍;(2)若函數(shù)的最小值為,解關(guān)于的不等式。20.如圖,矩形所在平面與以為直徑的圓所在平面垂直,為中點(diǎn),是圓周上一點(diǎn),且,,.(1)求異面直線與所成角的余弦值;(2)設(shè)點(diǎn)是線段上的點(diǎn),且滿足,若直線平面,求實(shí)數(shù)的值.21.如圖,四棱錐中,底面為平行四邊形,,,底面.(1)證明:;(2)設(shè),求點(diǎn)到面的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)題意,依次分析命題:對于①,可利用反證法說明真假;對于②,為等腰直角三角形,平面,得平面,根據(jù)勾股定理逆定理可知;對于③,由與平面所成的角為知真假;對于④,利用等體積法求出所求體積進(jìn)行判定即可,綜合可得答案.【詳解】在四邊形中,,,則,可得,由,若,且,可得平面,平面,,這與矛盾,故①不正確;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正確;由②知平面,則直線與平面所成的角為,且有,,則為等腰直角三角形,且,則.故③不正確;四面體的體積為,故④不正確.故選:B.【點(diǎn)睛】本題主要考查了直線與平面所成的角,以及三棱錐的體積的計(jì)算,考查了空間想象能力,推理論證能力,解題的關(guān)鍵是須對每一個(gè)進(jìn)行逐一判定.2、B【解析】作出約束條件表示的可行域,如圖中陰影部分所示.目標(biāo)函數(shù)即,易知直線在軸上的截距最大時(shí),目標(biāo)函數(shù)取得最小值;在軸上的截距最小時(shí),目標(biāo)函數(shù)取得最大值,即在點(diǎn)處取得最小值,為;在點(diǎn)處取得最大值,為.故的取值范圍是[–3,2].所以選B.【名師點(diǎn)睛】線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即運(yùn)用數(shù)形結(jié)合的思想解題.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會在可行域的端點(diǎn)處或邊界上取得.3、D【解析】
求出以A為圓心,以邊長為半徑,圓心角為∠BAC的扇形的面積,根據(jù)圖形的性質(zhì),可知它的3倍減去2倍的等邊三角形ABC【詳解】設(shè)等邊三角形ABC的邊長為a,設(shè)以A為圓心,以邊長為半徑,圓心角為∠BAC的扇形的面積為S1,則S1=萊洛三角形面積為S,則S=3S在此圖形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自等邊三角形內(nèi)的概率為P,P=S【點(diǎn)睛】本題考查了幾何概型.解決本題的關(guān)鍵是正確求出萊洛三角形的面積.考查了運(yùn)算能力.4、C【解析】
利用列舉法求得基本事件的總數(shù),利用古典概型的概率計(jì)算公式,即可求解.【詳解】由題意,連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情況,出現(xiàn)正面向上與反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2種,所以的概率為,故選C.【點(diǎn)睛】本題主要考查了古典概型及其概率的計(jì)算問題,其中解答中熟練利用列舉法求得基本事件的總數(shù)是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5、B【解析】
由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【詳解】由題,因?yàn)闉橐辉尾坏仁?,所以a≠0又因?yàn)閍x所以a>0Δ=故選B【點(diǎn)睛】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】試題分析:在同一坐標(biāo)系中分別畫出,,的圖象,與的交點(diǎn)的橫坐標(biāo)為,與的圖象的交點(diǎn)的橫坐標(biāo)為,與的圖象的交點(diǎn)的橫坐標(biāo)為,從圖象可以看出.考點(diǎn):指數(shù)函數(shù)、對數(shù)函數(shù)圖象和性質(zhì)的應(yīng)用.【方法點(diǎn)睛】一般一個(gè)方程中含有兩個(gè)以上的函數(shù)類型,就要考慮用數(shù)形結(jié)合求解,在同一坐標(biāo)系中畫出兩函數(shù)圖象的交點(diǎn),函數(shù)圖象的交點(diǎn)的橫坐標(biāo)即為方程的解.7、D【解析】
根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對四個(gè)選項(xiàng)逐一分析排除,由此得出正確選項(xiàng).【詳解】對于A選項(xiàng),直線有可能在平面內(nèi),故A選項(xiàng)錯(cuò)誤.對于B選項(xiàng),兩個(gè)平面有可能相交,平行于它們的交線,故B選項(xiàng)錯(cuò)誤.對于C選項(xiàng),可能平行,故C選項(xiàng)錯(cuò)誤.根據(jù)線面垂直的性質(zhì)定理可知D選項(xiàng)正確.故選D.【點(diǎn)睛】本小題主要考查空間線、面位置關(guān)系的判斷,屬于基礎(chǔ)題.8、D【解析】
依次判斷每個(gè)選項(xiàng)得出答案.【詳解】A.,取,不滿足,排除B.,取,不滿足,排除C.,當(dāng)時(shí),不滿足,排除D.,不等式兩邊同時(shí)除以不為0的正數(shù),成立故答案選D【點(diǎn)睛】本題考查了不等式的性質(zhì),意在考查學(xué)生的基礎(chǔ)知識.9、C【解析】在中,已知,由余弦定理,即,解得或,又,或,故選C.10、A【解析】設(shè)l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直線二、填空題:本大題共6小題,每小題5分,共30分。11、4.3【解析】
由所給數(shù)據(jù)求出,根據(jù)回歸直線過中心點(diǎn)可求解.【詳解】由表格得到,,將樣本中心代入線性回歸方程得.故答案為:4.3【點(diǎn)睛】本題考查線性回歸直線方程,掌握回歸直線的性質(zhì)是解題關(guān)鍵,即回歸直線必過中心點(diǎn).12、【解析】
根據(jù)極限存在得出,對分、和三種情況討論得出與之間的關(guān)系,可得出的取值范圍.【詳解】由于,則.①當(dāng)時(shí),則,;②當(dāng)時(shí),則,;③當(dāng)時(shí),,解得.綜上所述:首項(xiàng)的取值范圍是,故答案為:.【點(diǎn)睛】本題考查極限的應(yīng)用,要結(jié)合極限的定義得出公比的取值范圍,同時(shí)要對公比的取值范圍進(jìn)行分類討論,考查分類討論思想的應(yīng)用,屬于中等題.13、【解析】
根據(jù)題意,可令,結(jié)合,再進(jìn)行整體代換即可求解【詳解】令,則,,,則,,,則函數(shù)值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查3倍角公式的使用,函數(shù)的轉(zhuǎn)化思想,屬于中檔題14、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個(gè)車間依次抽取a,b,c個(gè)樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.15、【解析】
先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【詳解】設(shè)球半徑為,則,解得,所以【點(diǎn)睛】本題考查球的面積、體積計(jì)算,屬于基礎(chǔ)題.16、【解析】
根據(jù)條件求出的表達(dá)式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項(xiàng)公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項(xiàng).所以,故答案為:【點(diǎn)睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強(qiáng),考查學(xué)生的計(jì)算能力,屬于難題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(2),函數(shù)的值域?yàn)?(2).【解析】
(1)將函數(shù)化簡整理,根據(jù)正三角形的高為,可求出,進(jìn)而可得其值域;(2)由得到,再由求出,進(jìn)而可求出結(jié)果.【詳解】(1)由已知可得,又正三角形的高為,則,所以函數(shù)的最小正周期,即,得,函數(shù)的值域?yàn)椋?2)因?yàn)椋?1)得,即,由,得,即=,故.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),熟記正弦函數(shù)的性質(zhì)即可求解,屬于基礎(chǔ)題型.18、(1),(2)【解析】
(1)由結(jié)合,可求出,從而得到(2)建立直角坐標(biāo)系,設(shè),可得到,然后利用二次函數(shù)的知識求出最小值【詳解】(1)如圖,四邊形ABCD為菱形,所以所以因?yàn)?所以可解得,所以所以是等邊三角形,故(2)以A為原點(diǎn),所在直線為x軸建立如圖所示坐標(biāo)系:則有,所以線段:設(shè),則有,所以因?yàn)?,所以?dāng)時(shí)取得最小值【點(diǎn)睛】本題考查平面向量數(shù)量積及其運(yùn)算,涉及余弦定理,二次函數(shù)等基本知識,屬于中檔題.19、(1);(2)【解析】
(1)由的定義域?yàn)榭芍?,,恒成立,即可求出的范?(2)結(jié)合的范圍,運(yùn)用配方法,即可求出的值,進(jìn)而求解不等式.【詳解】(1)由已知可得對,恒成立,當(dāng)時(shí),恒成立。當(dāng)時(shí),則有,解得,綜上可知,的取值范圍是[0,1](2)由(1)可知的取值范圍是[0,1]顯然,當(dāng)時(shí),,不符合.所以,,,由題意得,,,可化為,解得,不等式的解集為?!军c(diǎn)睛】主要考查了一元二次不等式在上恒成立求參數(shù)范圍,配方法以及一元二次不等式求解問題,屬于中檔題.對任意實(shí)數(shù)恒成立的條件是;而任意實(shí)數(shù)恒成立的條件是.20、(1);(2)1【解析】
(1)取中點(diǎn),連接,即為所求角。在中,易得MC,NC的長,MN可在直角三角形中求得。再用余弦定理易求得夾角。(2)連接,連接和交于點(diǎn),連接,易得,所以為的中位線,所以為中點(diǎn),所以的值為1。【詳解】(1)取中點(diǎn),連接因?yàn)闉榫匦危謩e為中點(diǎn),所以所以異面直線與所成角就是與所成的銳角或直角因?yàn)槠矫嫫矫?,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圓周上點(diǎn),且,所以中,,由余弦定理可求得所以異面直線與所成角的余弦值為(2)連接,連接和交于點(diǎn),連接因?yàn)橹本€平面,直線平面,平面平面所以矩形的對角線交點(diǎn)為中點(diǎn)所以為的中位線,所以為中點(diǎn)又,所以的值為1【點(diǎn)睛】(1)異面直線所成夾角一般是要平移到一個(gè)平面。(2)通過幾何關(guān)系確定未知點(diǎn)的位置,再求解線段長即可。21、(1)見解析(2)【解析】試題分析:(Ⅰ)要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 飯店代運(yùn)營合同范例
- 辦公樓標(biāo)識合同范例
- 北京司機(jī)合同范例
- 購買酒店合同范例范例
- 借貸債權(quán)轉(zhuǎn)讓合同范例
- 集中供氣合同范例
- 專用變壓器合同范例
- 提供服務(wù)合作合同范例
- 土方調(diào)運(yùn)合同范例
- 托管產(chǎn)品主動分紅合同范例
- 籃球館受傷免責(zé)協(xié)議
- 高一班主任上學(xué)期工作總結(jié)
- 信息經(jīng)濟(jì)學(xué)重點(diǎn)難點(diǎn)
- 2023-2024學(xué)年貴州省貴陽市南明區(qū)四年級數(shù)學(xué)第一學(xué)期期末含答案
- 金融服務(wù)營銷PPT完整全套教學(xué)課件
- 經(jīng)濟(jì)博弈論(謝織予)課后答案及補(bǔ)充習(xí)題答案
- 國開電大2022年春季期末考試《園產(chǎn)品貯藏技術(shù)》試題(試卷代號2713)
- 有機(jī)波譜分析考試題庫及答案1
- 2023海南省圖書館公開招聘財(cái)政定額補(bǔ)貼人員15人(一)模擬備考預(yù)測(共1000題含答案解析)綜合試卷
- 導(dǎo)游考試指南:一個(gè)月過北京導(dǎo)游考試
- 跨境電商平臺認(rèn)知Lazada
評論
0/150
提交評論