版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖北省宜昌市部分示范高中教學協(xié)作體2025屆高一下數(shù)學期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖是一個正方體的平面展開圖,在這個正方體中①②③與為異面直線④以上四個命題中,正確的序號是()A.①②③ B.②④ C.③④ D.②③④2.函數(shù)定義域是()A. B. C. D.3.已知是銳角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限4.函數(shù)(其中,,)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點()A.向右平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向左平移個單位長度5.已知,則的值為()A. B.1 C. D.6.直線在軸上的截距為()A. B. C. D.7.在△ABC中,N是AC邊上一點,且=,P是BN上的一點,若=m+,則實數(shù)m的值為()A. B. C.1 D.38.若正實數(shù)滿足,則的最小值為A. B. C. D.9.已知數(shù)列滿足:,,則該數(shù)列中滿足的項共有()項A. B. C. D.10.過點且與直線垂直的直線方程是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,半徑為的扇形的圓心角為,點在上,且,若,則__________.12.某單位有200名職工,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1-200編號,并按編號順序平均分為40組(1-5號,6-10號…,196-200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是13.如圖,在圓心角為直角的扇形OAB中,分別以OA,OB為直徑作兩個半圓,設,則陰影部分的面積是__________.14.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____.15.若函數(shù)的圖象與直線恰有兩個不同交點,則m的取值范圍是________.16.已知與的夾角為,,,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)已知,且為第三象限角,求的值(2)已知,計算的值.18.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.19.已知數(shù)列,,,且.(1)設,證明數(shù)列是等比數(shù)列,并求數(shù)列的通項;(2)若,并且數(shù)列的前項和為,不等式對任意正整數(shù)恒成立,求正整數(shù)的最小值.(注:當時,則)20.已知向量,.(1)若,求的值.(2)記,在中,滿足,求函數(shù)的取值范圍.21.學生會有共名同學,其中名男生名女生,現(xiàn)從中隨機選出名代表發(fā)言.求:同學被選中的概率;至少有名女同學被選中的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
作出直觀圖,根據(jù)正方體的結(jié)構(gòu)特征進行判斷.【詳解】作出正方體得到直觀圖如圖所示:由直觀圖可知,與為互相垂直的異面直線,故①不正確;,故②正確;與為異面直線,故③正確;由正方體性質(zhì)可知平面,故,故④正確.故選:D【點睛】本題考查了正方體的結(jié)構(gòu)特征,直線,平面的平行于垂直,屬于基礎題.2、A【解析】
若函數(shù)有意義,則需滿足,進而求解即可【詳解】由題,則,解得,故選:A【點睛】本題考查具體函數(shù)的定義域,屬于基礎題3、C【解析】是銳角,∴,∴是小于的正角4、C【解析】
通過圖象可以知道:最低點的縱坐標為,函數(shù)的圖象與橫軸的交點的坐標為,與之相鄰的最低點的坐標為,這樣可以求出和最小正周期,利用余弦型函數(shù)最小正周期公式,可以求出,把零點代入解析式中,可以求出,這樣可以求出函數(shù)的解析式,利用誘導公式化為正弦型三角函數(shù)解析式形式,最后利用平移變換解析式的變化得出正確答案.【詳解】由圖象可知:函數(shù)的最低點的縱坐標為,函數(shù)的圖象與橫軸的交點的坐標為,與之相鄰的最低點的坐標為,所以,設函數(shù)的最小正周期為,則有,而,把代入函數(shù)解析式中,得,所以,而,顯然由向右平移個單位長度得到的圖象,故本題選C.【點睛】本題考查了由函數(shù)圖象求余弦型函數(shù)解析式,考查了正弦型函數(shù)圖象之間的平移變換規(guī)律.5、B【解析】
化為齊次分式,分子分母同除以,化弦為切,即可求解.【詳解】.故選:B.【點睛】本題考查已知三角函數(shù)值求值,通過齊次分式化弦為切,屬于基礎題.6、A【解析】
取計算得到答案.【詳解】直線在軸上的截距:取故答案選A【點睛】本題考查了直線的截距,屬于簡單題.7、B【解析】
根據(jù)向量的線性表示逐步代換掉不需要的向量求解.【詳解】設,所以所以故選B.【點睛】本題考查向量的線性運算,屬于基礎題.8、D【解析】
將變成,可得,展開后利用基本不等式求解即可.【詳解】,,,,當且僅當,取等號,故選D.【點睛】本題主要考查利用基本不等式求最值,屬于中檔題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。?;三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)是否在定義域內(nèi),二是多次用或時等號能否同時成立).9、C【解析】
利用累加法求出數(shù)列的通項公式,然后解不等式,得出符合條件的正整數(shù)的個數(shù),即可得出結(jié)論.【詳解】,,,解不等式,即,即,,則或.故選:C.【點睛】本題考查了數(shù)列不等式的求解,同時也涉及了利用累加法求數(shù)列通項,解題的關鍵就是求出數(shù)列的通項,考查運算求解能力,屬于中等題.10、D【解析】
由已知直線方程求得直線的斜率,再根據(jù)兩直線垂直,得到所求直線的斜率,最后用點斜式寫出所求直線的方程.【詳解】已知直線的斜率為:因為兩直線垂直所以所求直線的斜率為又所求直線過點所以所求直線方程為:即:故選:D【點睛】本題主要考查了直線與直線的位置關系及直線方程的求法,還考查了運算求解的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意,可得OA⊥OC,以O為坐標為坐標原點,OC,OA所在直線分別為x軸、y軸建立平面直角坐標系,如圖所示:則有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,則:,解得.∴.點睛:(1)應用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.12、1【解析】試題分析:因為將全體職工隨機按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,因為第5組抽出的號碼為22,所以第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為1.考點:系統(tǒng)抽樣.點評:本題考查系統(tǒng)抽樣,在系統(tǒng)抽樣過程中得到的樣本號碼是最規(guī)則的一組編號.13、【解析】
:設兩個半圓交于點,連接,可得直角扇形的面積等于以為直徑的兩個半圓的面積之和,平分,可得陰影部分的面積.【詳解】解:設兩個半圓交于點,連接,,∴直角扇形的面積等于以為直徑的兩個半圓的面積之和,由對稱性可得:平分,故陰影部分的面積是:.故答案為:.【點睛】本題主要考查扇形的計算公式,相對不難.14、【解析】
由已知求得母線長,代入圓錐側(cè)面積公式求解.【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π.故答案為:2π.【點睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.15、【解析】
化簡函數(shù)解析式為,做出函數(shù)的圖象,數(shù)形結(jié)合可得的取值范圍.【詳解】解:因為所以,,由,可得,則函數(shù),的圖象與直線恰有兩個不同交點,即方程在上有兩個不同的解,畫出的圖象如下所示:依題意可得時,函數(shù)的圖象與直線恰有兩個不同交點,故答案為:【點睛】本題主要考查正弦函數(shù)的最大值和單調(diào)性,函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象特征,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.16、3【解析】
將平方再利用數(shù)量積公式求解即可.【詳解】因為,故.化簡得.因為,故.故答案為:3【點睛】本題主要考查了模長與數(shù)量積的綜合運用,經(jīng)常利用平方去處理.屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由,結(jié)合為第三象限角,即可得解;(2)由,代入求解即可.【詳解】(1),∴,又∵是第三象限.∴(2).【點睛】本題主要考查了同角三角函數(shù)的基本關系,屬于基礎題.18、(1);(2).【解析】試題分析:本題主要考查正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式等基礎知識,同時考查考生的分析問題解決問題的能力和運算求解能力.第一問,利用正弦定理將邊換成角,消去,解出角C,再利用解出邊b的長;第二問,利用三角形面積公式,可直接解出a邊的值,再利用余弦定理解出邊c的長.試題解析:(Ⅰ)由正弦定理得,又,所以,.因為,所以.…6分(Ⅱ)因為,,所以.據(jù)余弦定理可得,所以.…12分考點:正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式.19、(1)證明見解析,(2)10【解析】
(1)根據(jù)等比數(shù)列的定義,結(jié)合題中條件,計算,,即可證明數(shù)列是等比數(shù)列,求出;再根據(jù)累加法,即可求出數(shù)列的通項;(2)根據(jù)題意,得到,分別求出,當,用放縮法得,根據(jù)裂項相消法求,進而可求出結(jié)果.【詳解】(1)證明:,而∴是以4為首項2為公比的等比數(shù)列,,∴即,,所以,,......,,以上各式相加得:;∴;(2)由(1)得:,,,,,由已知條件知當時,,即∴,而綜上所述得最小值為10.【點睛】本題主要考查證明數(shù)列為等比數(shù)列,求數(shù)列的通項公式,以及數(shù)列的應用,熟記等比數(shù)列的概念,累加法求數(shù)列的通項公式,以及裂項相消法求數(shù)列的和等即可,屬于常考題型.20、(1);(2)【解析】
(1)求出數(shù)量積,由二倍角公式和兩角和的正弦公式化簡,求出,然后結(jié)合誘導公式和余弦的二倍角公式可求值;(2)應用兩角和的正弦公式可求得,得有范圍,由(1)的結(jié)論得,即其范圍.【詳解】(1)由題意,,.(2)由(1),由得,三角形中,∴,.則,,∴.【點睛】本題考查平面向量數(shù)量積的坐標表示,考查兩角和正弦公式,二倍角公式,考查三角函數(shù)的性質(zhì).解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 變頻器維修技術(shù)培訓課件
- 建筑企業(yè)員工行為培訓
- 中考數(shù)學二輪復習專項18~20題對點提分訓練(三)課件
- 2025蛇年年終總結(jié)新年計劃工作總結(jié)模板
- 15.3 串聯(lián)和并聯(lián)(8大題型)(含答案解析)
- 期中模擬檢測(1-4單元)(試題)(含答案)-2024-2025學年四年級上冊數(shù)學北師大版
- 吉林省白山市撫松縣 2024-2025學年七年級上學期期中道德與法治試卷(含答案)
- T-ZFDSA 22-2024 蘆根蜂蜜飲制作標準
- 【山東省安全員A證】考試題庫及答案
- 編舞基礎理論知識單選題100道及答案解析
- 2023-2024學年廣西崇左市龍州縣科目一模擬考試100題附答案解析
- 勞務投標技術(shù)標
- 倉庫貨品存放和五距標準和消防安全要求培訓課件
- 班組長培訓之有效執(zhí)行力
- 《常用局域網(wǎng)設備》課件
- 卵巢惡性腫瘤教學查房
- 老年人小組活動計劃書兩篇
- 《玄武巖纖維瀝青混合料技術(shù)規(guī)范》征求意見稿
- 2023年秋季國開《學前教育科研方法》期末大作業(yè)(參考答案)
- 2023年電焊工技能鑒定實操試題
- 幼兒學大班數(shù)學試題(6歲)1
評論
0/150
提交評論