2022年河北省唐山市灤南縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第1頁(yè)
2022年河北省唐山市灤南縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第2頁(yè)
2022年河北省唐山市灤南縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第3頁(yè)
2022年河北省唐山市灤南縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第4頁(yè)
2022年河北省唐山市灤南縣數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的函數(shù)滿足,且當(dāng)時(shí),.設(shè)在上的最大值為(),且數(shù)列的前項(xiàng)的和為.若對(duì)于任意正整數(shù)不等式恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.已知向量,,,若,則()A. B. C. D.3.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對(duì)今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽(yáng)太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長(zhǎng)為,陰陽(yáng)太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.4.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)5.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.06.如圖,在中,,是上的一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.7.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.8.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則在復(fù)平面內(nèi)復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知中,,則()A.1 B. C. D.10.在鈍角中,角所對(duì)的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.11.2019年10月17日是我國(guó)第6個(gè)“扶貧日”,某醫(yī)院開(kāi)展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種12.已知復(fù)數(shù),則的虛部為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.14.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_(kāi)______________.15.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為_(kāi)_________.16.已知向量,若向量與共線,則________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).18.(12分)[2018·石家莊一檢]已知函數(shù).(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.19.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過(guò)的平面交于點(diǎn),若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.20.(12分)2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?0分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)21.(12分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.22.(10分)(1)已知數(shù)列滿足:,且(為非零常數(shù),),求數(shù)列的前項(xiàng)和;(2)已知數(shù)列滿足:(?。?duì)任意的;(ⅱ)對(duì)任意的,,且.①若,求數(shù)列是等比數(shù)列的充要條件.②求證:數(shù)列是等比數(shù)列,其中.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由已知先求出,即,進(jìn)一步可得,再將所求問(wèn)題轉(zhuǎn)化為對(duì)于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當(dāng)時(shí),則,,所以,,顯然當(dāng)時(shí),,故,,若對(duì)于任意正整數(shù)不等式恒成立,即對(duì)于任意正整數(shù)恒成立,即對(duì)于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.【點(diǎn)睛】本題考查數(shù)列中的不等式恒成立問(wèn)題,涉及到求函數(shù)解析、等比數(shù)列前n項(xiàng)和、數(shù)列單調(diào)性的判斷等知識(shí),是一道較為綜合的數(shù)列題.2、A【解析】

根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問(wèn)題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.3、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.4、B【解析】

根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.5、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【點(diǎn)睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.6、B【解析】

變形為,由得,轉(zhuǎn)化在中,利用三點(diǎn)共線可得.【詳解】解:依題:,又三點(diǎn)共線,,解得.故選:.【點(diǎn)睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過(guò)向量的運(yùn)算來(lái)解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點(diǎn)共線?(為平面內(nèi)任一點(diǎn),)7、B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過(guò)點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.8、D【解析】

根據(jù)復(fù)數(shù)運(yùn)算,求得,再求其對(duì)應(yīng)點(diǎn)即可判斷.【詳解】,故其對(duì)應(yīng)點(diǎn)的坐標(biāo)為.其位于第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,以及復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo),屬綜合基礎(chǔ)題.9、C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.【點(diǎn)睛】本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.10、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因?yàn)?,所以因?yàn)樗?,即,,時(shí)故選:【點(diǎn)睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.11、B【解析】

分兩類:一類是醫(yī)院A只分配1人,另一類是醫(yī)院A分配2人,分別計(jì)算出兩類的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類:第一類:若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類:若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B【點(diǎn)睛】本題考查排列與組合的綜合應(yīng)用,在做此類題時(shí),要做到分類不重不漏,考查學(xué)生分類討論的思想,是一道中檔題.12、C【解析】

先將,化簡(jiǎn)轉(zhuǎn)化為,再得到下結(jié)論.【詳解】已知復(fù)數(shù),所以,所以的虛部為-1.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來(lái)求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.14、【解析】

根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.15、18【解析】

根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對(duì)稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時(shí),,函數(shù)開(kāi)口向上,對(duì)稱軸為,因?yàn)樵趨^(qū)間上單調(diào)遞減,則,因?yàn)?則,整理得,又因?yàn)?則.所以即,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立.綜上所述,的最大值為18.故答案為:18【點(diǎn)睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.16、【解析】

計(jì)算得到,根據(jù)向量平行計(jì)算得到答案.【詳解】由題意可得,因?yàn)榕c共線,所以有,即,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量平行求參數(shù),意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】

(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點(diǎn)P的坐標(biāo)為,由題可得:,利用兩點(diǎn)距離公式列方程即可求解?!驹斀狻拷猓海?)由消去參數(shù),得.即直線的普通方程為.因?yàn)橛?,∴曲線的直角坐標(biāo)方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)P到上的點(diǎn)的最短距離為|PQ|即,整理得,解得所以點(diǎn)P的坐標(biāo)為(-1,0)或(2,3)【點(diǎn)睛】本題主要考查了參數(shù)方程化為普通方程及極坐標(biāo)方程化為直角坐標(biāo)方程,還考查了轉(zhuǎn)化思想及兩點(diǎn)距離公式,考查了方程思想及計(jì)算能力,屬于中檔題。18、(1)(2)見(jiàn)解析【解析】試題分析:(1)分別求得和,由點(diǎn)斜式可得切線方程;(2)由已知條件可得有兩個(gè)相異實(shí)根,,進(jìn)而再求導(dǎo)可得,結(jié)合函數(shù)的單調(diào)性可得,從而得證.試題解析:(1)由已知條件,,當(dāng)時(shí),,,當(dāng)時(shí),,所以所求切線方程為(2)由已知條件可得有兩個(gè)相異實(shí)根,,令,則,1)若,則,單調(diào)遞增,不可能有兩根;2)若,令得,可知在上單調(diào)遞增,在上單調(diào)遞減,令解得,由有,由有,從而時(shí)函數(shù)有兩個(gè)極值點(diǎn),當(dāng)變化時(shí),,的變化情況如下表單調(diào)遞減單調(diào)遞增單調(diào)遞減因?yàn)椋?,在區(qū)間上單調(diào)遞增,.另解:由已知可得,則,令,則,可知函數(shù)在單調(diào)遞增,在單調(diào)遞減,若有兩個(gè)根,則可得,當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞增,所以.19、(1)見(jiàn)證明;(2)【解析】

(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得,取,得,,同理可求得平面的法向量為,設(shè)二面角的平面角為,則,所以二面角的余弦值為.【點(diǎn)睛】本題考查了兩平面垂直的判定,考查了利用空間向量的方法求二面角,考查了棱錐的體積的計(jì)算,考查了空間想象能力及計(jì)算能力,屬于中檔題.20、(Ⅰ)萬(wàn);(Ⅱ)分布列見(jiàn)解析,;(Ⅲ)【解析】

(Ⅰ)根據(jù)比例關(guān)系直接計(jì)算得到答案.(Ⅱ)的可能取值為,計(jì)算概率得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.(Ⅲ)英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語(yǔ)成績(jī)?cè)诜忠陨系挠腥?,故人?shù)為:萬(wàn)人.(Ⅱ)8名男生中,測(cè)試成績(jī)?cè)?0分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率為,故,故.故的最小值為.【點(diǎn)睛】本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論