2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校數(shù)學高一下期末聯(lián)考模擬試題含解析_第1頁
2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校數(shù)學高一下期末聯(lián)考模擬試題含解析_第2頁
2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校數(shù)學高一下期末聯(lián)考模擬試題含解析_第3頁
2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校數(shù)學高一下期末聯(lián)考模擬試題含解析_第4頁
2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校數(shù)學高一下期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣東省執(zhí)信中學、廣州二中、廣州六中、廣雅中學四校數(shù)學高一下期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.向正方形ABCD內(nèi)任投一點P,則“的面積大于正方形ABCD面積的”的概率是()A. B. C. D.2.下列函數(shù)中,在區(qū)間上單調(diào)遞增的是()A. B. C. D.3.已知關(guān)于的不等式對任意恒成立,則的取值范圍是()A. B.C. D.4.如圖是一個邊長為3的正方形二維碼,為了測算圖中黑色部分的面積,在正方形區(qū)域內(nèi)隨機投擲1089個點,其中落入白色部分的有484個點,據(jù)此可估計黑色部分的面積為()A.4 B.5 C.8 D.95.已知向量,且,則的值為()A.6 B.-6 C. D.6.若函數(shù)只有一個零點,則實數(shù)的取值范圍是A.或 B.C.或 D.7.如圖所示,在邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,向該正方形中隨機撒一粒豆子,它落在陰影區(qū)域的概率是,則該陰影區(qū)域的面積是()A.3 B. C. D.8.函數(shù)y=tan(–2x)的定義域是()A.{x|x≠+,k∈Z} B.{x|x≠kπ+,k∈Z}C.{x|x≠+,k∈Z} D.{x|x≠kπ+,k∈Z}9.若,,則等于()A. B. C. D.10.在中,角所對應的邊分別為,且滿足,則的形狀為()A.等腰三角形或直角三角形 B.等腰三角形C.直角三角形 D.等邊三角形二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在邊長為的菱形中,,為中點,則______.12.某幼兒園對兒童記憶能力的量化評價值和識圖能力的量化評價值進行統(tǒng)計分析,得到如下數(shù)據(jù):468103568由表中數(shù)據(jù),求得回歸直線方程中的,則.13.已知,,則______.14.已知變量之間滿足線性相關(guān)關(guān)系,且之間的相關(guān)數(shù)據(jù)如下表所示:_____.12340.13.1415.在等差數(shù)列中,若,則的前13項之和等于______.16.已知是等比數(shù)列,,,則公比______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線:及圓心為的圓:.(1)當時,求直線與圓相交所得弦長;(2)若直線與圓相切,求實數(shù)的值.18.(1)從2,3,8,9中任取兩個不同的數(shù)字,分別記為,求為整數(shù)的概率?(2)兩人相約在7點到8點在某地會面,先到者等候另一個人20分鐘方可離去.試求這兩人能會面的概率?19.已知夾角為,且,,求:(1);(2)與的夾角.20.己知向量,,設(shè)函數(shù),且的圖象過點和點.(1)當時,求函數(shù)的最大值和最小值及相應的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.21.在平面直角坐標系中,的頂點、,邊上的高線所在的直線方程為,邊上的中線所在的直線方程為.(1)求點B到直線的距離;(2)求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題意,求出滿足題意的點所在區(qū)域的面積,利用面積比求概率.【詳解】由題意,設(shè)正方形的邊長為1,則正方形的面積為1,要使的面積大于正方形面積的,需要到的距離大于,即點所在區(qū)域面積為,由幾何概型得,的面積大于正方形面積的的概率為.故選:C.【點睛】本題考查幾何概型的概率求法,解題的關(guān)鍵是明確概率模型,屬于基礎(chǔ)題.2、A【解析】

判斷每個函數(shù)在上的單調(diào)性即可.【詳解】解:在上單調(diào)遞增,,和在上都是單調(diào)遞減.故選:A.【點睛】考查冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)和反比例函數(shù)的單調(diào)性.3、A【解析】

分別討論和兩種情況下,恒成立的條件,即可求得的取值范圍.【詳解】當時,不等式可化為,其恒成立當時,要滿足關(guān)于的不等式任意恒成立,只需解得:.綜上所述,的取值范圍是.故選:A.【點睛】本題考查了含參數(shù)一元二次不等式恒成立問題,解題關(guān)鍵是掌握含有參數(shù)的不等式的求解,首先需要對二次項系數(shù)討論,注意分類討論思想的應用,屬于基礎(chǔ)題.4、B【解析】

由幾何概型中的隨機模擬試驗可得:,將正方形面積代入運算即可.【詳解】由題意在正方形區(qū)域內(nèi)隨機投擲1089個點,其中落入白色部分的有484個點,則其中落入黑色部分的有605個點,由隨機模擬試驗可得:,又,可得,故選B.【點睛】本題主要考查幾何概型概率公式以及模擬實驗的基本應用,屬于簡單題,求不規(guī)則圖形的面積的主要方法就是利用模擬實驗,列出未知面積與已知面積之間的方程求解.5、A【解析】

兩向量平行,內(nèi)積等于外積?!驹斀狻?,所以選A.【點睛】本題考查兩向量平行的坐標運算,屬于基礎(chǔ)題。6、A【解析】

根據(jù)題意,原題等價于,再討論即可得到結(jié)論.【詳解】由題,故函數(shù)有一個零點等價于即當時,,,符合題意;當,時,令,滿足解得,綜上的取值范圍是或故選:A.【點睛】本題考查函數(shù)的零點,對數(shù)函數(shù)的性質(zhì),二次函數(shù)根的分布問題,考查了分類討論思想,屬于中檔題.7、B【解析】

利用幾何概型的意義進行模擬試驗,即估算不規(guī)則圖形面積的大?。驹斀狻空叫沃须S機撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率,,又,.故選:B.【點睛】本題考查幾何概型的意義進行模擬試驗,計算不規(guī)則圖形的面積,考查邏輯推理能力和運算求解能力,求解時注意豆子落在陰影區(qū)域內(nèi)的概率與陰影部分面積及正方形面積之間的關(guān)系.8、A【解析】

根據(jù)誘導公式化簡解析式,由正切函數(shù)的定義域求出此函數(shù)的定義域.【詳解】由題意得,y=tan(–2x)=–tan(2x–),由2x–(k∈Z)得,x≠+,k∈Z,所以函數(shù)的定義域是{x|x≠+,k∈Z},故選:A.【點睛】本題考查正切函數(shù)的定義域,以及誘導公式的應用,屬于基礎(chǔ)題.9、C【解析】

直接用向量的坐標運算即可得到答案.【詳解】由,.故選:C【點睛】本題考查向量的坐標運算,屬于基礎(chǔ)題.10、A【解析】

由正弦定理進行邊化角,再由二倍角公式可得,則或,所以或,即可判斷三角形的形狀.【詳解】由正弦定理得,則,因此在中,或,即或.故選:A【點睛】本題考查利用正弦定理進行邊角互化,判斷三角形形狀,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

選取為基底,根據(jù)向量的加法減法運算,利用數(shù)量積公式計算即可.【詳解】因為,,,又,.【點睛】本題主要考查了向量的加法減法運算,向量的數(shù)量積,屬于中檔題.12、-0.1【解析】

分別求出和的均值,代入線性回歸方程即可.【詳解】由表中數(shù)據(jù)易得,,由在直線方程上,可得【點睛】此題考查線性回歸方程形式,表示在回歸直線上代入即可,屬于簡單題目.13、【解析】

利用同角三角函數(shù)的基本關(guān)系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結(jié)合的范圍,求得的值.【詳解】,,,,,,故答案:.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和的正切公式,二倍角的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎(chǔ)題.14、【解析】

根據(jù)回歸直線方程過樣本點的中心,代入數(shù)據(jù)即可計算出的值.【詳解】因為,,所以,解得.故答案為:.【點睛】本題考查根據(jù)回歸直線方程過樣本點的中心求參數(shù),難度較易.15、【解析】

根據(jù)題意,以及等差數(shù)列的性質(zhì),先得到,再由等差數(shù)列的求和公式,即可求出結(jié)果.【詳解】因為是等差數(shù)列,,所以,即,記前項和為,則.故答案為:【點睛】本題主要考查等差數(shù)列前項和的基本量的運算,熟記等差數(shù)列的性質(zhì)以及求和公式即可,屬于基礎(chǔ)題型.16、【解析】

利用等比數(shù)列的性質(zhì)可求.【詳解】設(shè)等比數(shù)列的公比為,則,故.故答案為:【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)(為公比);(3)公比時,則有,其中為常數(shù)且;(4)為等比數(shù)列()且公比為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)弦長為4;(1)0【解析】

(1)由得到直線過圓的圓心,可求得弦長即為圓的直徑4;(1)由點到直線的距離等于半徑1,得到關(guān)于的方程,并求出.【詳解】(1)當時,直線:,圓:.圓心坐標為,半徑為1.圓心在直線上,則直線與圓相交所得弦長為4.(1)由直線與圓相切,則圓心到直線的距離等于半徑,所以,解得:.【點睛】本題考查直線與圓相交、相切兩種位置關(guān)系,求解時注意點到直線距離公式的應用,考查基本運算求解能力.18、(1);(2)【解析】

(1)分別求出基本事件總數(shù)及為整數(shù)的事件數(shù),再由古典概型概率公式求解;(2)建立坐標系,找出會面的區(qū)域,用會面的區(qū)域面積比總區(qū)域面積得答案.【詳解】(1)所有的基本事件共有4×3=12個,記事件A={為整數(shù)},因為,則事件A包含的基本事件共有2個,∴p(A)=;(2)以x、y分別表示兩人到達時刻,則.兩人能會面的充要條件是.建立直角坐標系如下圖:∴P=.∴這兩人能會面的概率為.【點睛】本題考查古典概型與幾何概型概率的求法,考查數(shù)學轉(zhuǎn)化思想方法,是基礎(chǔ)題.19、(1)(2)【解析】試題分析:(1)先求模的平方將問題轉(zhuǎn)化為向量的數(shù)量積問題.(2)根據(jù)數(shù)量積公式即可求得兩向量的夾角.(1),,所以.(2)設(shè)與的夾角為.則,因為,所以.考點:1向量的數(shù)量積;2向量的模長.20、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】

(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當時,解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當時,在有兩個不同的解∴,即.【點睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論