四川省瀘州老窖天府中學2025屆數(shù)學高一下期末調(diào)研模擬試題含解析_第1頁
四川省瀘州老窖天府中學2025屆數(shù)學高一下期末調(diào)研模擬試題含解析_第2頁
四川省瀘州老窖天府中學2025屆數(shù)學高一下期末調(diào)研模擬試題含解析_第3頁
四川省瀘州老窖天府中學2025屆數(shù)學高一下期末調(diào)研模擬試題含解析_第4頁
四川省瀘州老窖天府中學2025屆數(shù)學高一下期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省瀘州老窖天府中學2025屆數(shù)學高一下期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把一塊長是10,寬是8,高是6的長方形木料削成一個體積最大的球,這個球的體積等于()A. B.480 C. D.2.若正實數(shù)x,y滿足不等式,則的取值范圍是()A. B. C. D.3.四邊形,,,,則的外接圓與的內(nèi)切圓的公共弦長()A. B. C. D.4.設,為兩個平面,則能斷定∥的條件是()A.內(nèi)有無數(shù)條直線與平行 B.,平行于同一條直線C.,垂直于同一條直線 D.,垂直于同一平面5.函數(shù),,若對任意,存在,使得成立,則實數(shù)m的取值范圍是()A. B. C. D.6.直線與直線的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知向量,且,則的值為()A.1 B.2 C. D.38.等比數(shù)列,…的第四項等于(

)A.-24 B.0 C.12 D.249.在中,角,,所對的邊分別為,,,若,,則等于()A.1 B.2 C. D.410.設等比數(shù)列的前項和為,若,公比,則的值為()A.15 B.16 C.30 D.31二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若向量與垂直,則__________.12.已知平面向量,,滿足:,且,則的最小值為____.13.已知,,若,則______14.執(zhí)行如圖所示的程序框圖,則輸出結(jié)果_____.15.已知銳角的外接圓的半徑為1,,則的面積的取值范圍為_____.16.(理)已知函數(shù),若對恒成立,則的取值范圍為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)若,求的值.(2)記,在中,滿足,求函數(shù)的取值范圍.18.已知,是函數(shù)的兩個相鄰的零點.(1)求;(2)若對任意,都有,求實數(shù)的取值范圍.(3)若關于的方程在上有兩個不同的解,求實數(shù)的取值范圍.19.某工廠提供了節(jié)能降耗技術改造后生產(chǎn)產(chǎn)品過程中的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸)的幾組對照數(shù)據(jù).(1)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;(2)試根據(jù)(1)求出的線性回歸方程,預測產(chǎn)量為(噸)的生產(chǎn)能耗.相關公式:,.20.已知:的頂點,,.(1)求AB邊上的中線CD所在直線的方程;(2)求的面積.21.數(shù)列滿足,.(1)試求出,,;(2)猜想數(shù)列的通項公式并用數(shù)學歸納法證明.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

由題意知,此球是棱長為6的正方體的內(nèi)切球,根據(jù)其幾何特征知,此球的直徑與正方體的棱長是相等的,故可得球的直徑為6,再由球的體積公式求解即可.【詳解】解:由已知可得球的直徑為6,故半徑為3,其體積是,故選:.【點睛】本題考查長方體內(nèi)切球的幾何特征,以及球的體積公式,屬于基礎題.2、B【解析】

試題分析:由正實數(shù)滿足不等式,得到如下圖陰影所示的區(qū)域:當過點時,,當過點時,,所以的取值范圍是.考點:線性規(guī)劃問題.3、C【解析】

以為坐標原點,以為軸,軸建立平面直角坐標系,求出的外接圓與的內(nèi)切圓的方程,兩圓方程相減可得公共弦所在直線方程,求出弦心距,進而可得公共弦長.【詳解】解:以為坐標原點,以為軸,軸建立平面直角坐標系,過作交于點,則,故,則為等邊三角形,故,的外接圓方程為,①的內(nèi)切圓方程為,②①-②得兩圓的公共弦所在直線方程為:,的外接圓圓心到公共弦的距離為,公共弦長為,故答案為:C.【點睛】本題考查兩圓公共弦長的求解,關鍵是要求出兩圓的公共弦所在直線方程,將兩圓方程作差即可得到,是中檔題.4、C【解析】

對四個選項逐個分析,可得出答案.【詳解】對于選項A,當,相交于直線時,內(nèi)有無數(shù)條直線與平行,即A錯誤;對于選項B,當,相交于直線時,存在直線滿足:既與平行又不在兩平面內(nèi),該直線平行于,,故B錯誤;對于選項C,設直線AB垂直于,平面,垂足分別為A,B,假設與不平行,設其中一個交點為C,則三角形ABC中,,顯然不可能成立,即假設不成立,故與平行,故C正確;對于選項D,,垂直于同一平面,與可能平行也可能相交,故D錯誤.【點睛】本題考查了面面平行的判斷,考查了學生的空間想象能力,屬于中檔題.5、D【解析】,當時,對于∵對任意,存在,使得成立,,解得實數(shù)的取值范圍是.

故選D.【點睛】本題考查三角函數(shù)恒等變換,其中解題時問題轉(zhuǎn)化為求三角函數(shù)的值域并利用集合關系是解決問題的關鍵,6、B【解析】

聯(lián)立方程組,求得交點的坐標,即可得到答案.【詳解】由題意,聯(lián)立方程組:,解得,即兩直線的交點坐標為,在第二象限,選B.【點睛】本題主要考查了兩條直線的位置關系的應用,著重考查了運算與求解能力,屬于基礎題.7、A【解析】

由,轉(zhuǎn)化為,結(jié)合數(shù)量積的坐標運算得出,然后將所求代數(shù)式化為,并在分子分母上同時除以,利用弦化切的思想求解.【詳解】由題意可得,即.∴,故選A.【點睛】本題考查垂直向量的坐標表示以及同角三角函數(shù)的基本關系,考查弦化切思想的應用,一般而言,弦化切思想應用于以下兩方面:(1)弦的分式齊次式:當分式是關于角弦的次分式齊次式,分子分母同時除以,可以將分式由弦化為切;(2)弦的二次整式或二倍角的一次整式:先化為角的二次整式,然后除以化為弦的二次分式齊次式,并在分子分母中同時除以可以實現(xiàn)弦化切.8、A【解析】由x,3x+3,6x+6成等比數(shù)列得選A.考點:該題主要考查等比數(shù)列的概念和通項公式,考查計算能力.9、D【解析】

直接利用正弦定理得到,帶入化簡得到答案.【詳解】正弦定理:即:故選D【點睛】本題考查了正弦定理,意在考查學生的計算能力.10、A【解析】

直接利用等比數(shù)列前n項和公式求.【詳解】由題得.故選A【點睛】本題主要考查等比數(shù)列求和,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,所以,解得.12、-1【解析】

,,,由經(jīng)過向量運算得,知點在以為圓心,1為半徑的圓上,這樣,只要最小,就可化簡.【詳解】如圖,,則,設是中點,則,∵,∴,即,,記,則點在以為圓心,1為半徑的圓上,記,,注意到,因此當與反向時,最小,∴.∴最小值為-1.故答案為-1.【點睛】本題考查平面向量的數(shù)量積,解題關鍵是由已知得出點軌跡(讓表示的有向線段的起點都是原點)是圓,然后分析出只有最小時,才可能最?。畯亩玫浇忸}方法.13、【解析】

根據(jù)向量垂直的坐標表示列出等式,求出,再利用二倍角公式、平方關系即可求出.【詳解】由得,,解得,.【點睛】本題主要考查了向量垂直的坐標表示以及二倍角公式、平方關系的應用.14、1【解析】

弄清程序框圖的算法功能是解題關鍵.由模擬執(zhí)行程序,可知,本程序的算法功能是計算的值,依據(jù)數(shù)列求和方法——并項求和,即可求出.【詳解】根據(jù)程序框圖,可得程序框圖的功能是計算并輸出,輸出的為1.【點睛】本題主要考查了含有循環(huán)結(jié)構的程序框圖的算法功能的理解以及數(shù)列求和的基本方法——并項求和法的應用.正確得到程序框圖的算法功能,選擇合適的求和方法是解題的關鍵.15、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面積公式,三角函數(shù)恒等變換的應用可求S△ABC═sin(2B﹣)+,由銳角三角形求B的范圍,進而利用正弦函數(shù)的圖象和性質(zhì)即可得解.【詳解】解:∵銳角△ABC的外接圓的半徑為1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C為銳角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案為:(1,].【點睛】本題主要考查了正弦定理,三角形面積公式,三角函數(shù)恒等變換的應用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.16、【解析】試題分析:函數(shù)要使對恒成立,只要小于或等于的最小值即可,的最小值是0,即只需滿足,解得.考點:恒成立問題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)求出數(shù)量積,由二倍角公式和兩角和的正弦公式化簡,求出,然后結(jié)合誘導公式和余弦的二倍角公式可求值;(2)應用兩角和的正弦公式可求得,得有范圍,由(1)的結(jié)論得,即其范圍.【詳解】(1)由題意,,.(2)由(1),由得,三角形中,∴,.則,,∴.【點睛】本題考查平面向量數(shù)量積的坐標表示,考查兩角和正弦公式,二倍角公式,考查三角函數(shù)的性質(zhì).解題中利用三角公式化簡變形是解題關鍵,本題屬于中檔題.18、(1);(2);(3)【解析】

(1)先化簡,再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問題轉(zhuǎn)化為,根據(jù)三角函數(shù)的性質(zhì)求出的最大值,即可求出實數(shù)的取值范圍;(3)通過方程的解與函數(shù)圖象之間的交點關系,可將題意轉(zhuǎn)化為函數(shù)的圖象與直線有兩個交點,即可由圖象求出實數(shù)的取值范圍.【詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時,,的最大值為2,∴要使方程在上有兩個不同的解,即函數(shù)的圖象與直線有兩個交點,由圖象可知,即,所以【點睛】本題主要考查三角函數(shù)的圖象與性質(zhì)的應用,以及利用二倍角公式、兩角差的余弦公式、兩角和的正弦公式進行三角恒等變換,同時還考查了轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想的應用.19、(1)(2)可以預測產(chǎn)量為(噸)的生產(chǎn)能耗為(噸)【解析】

(1)根據(jù)表格中的數(shù)據(jù),求出,,,代入回歸系數(shù)的公式可求得,再根據(jù)回歸直線過樣本中心點即可求解.由(1)將代入即可求解.【詳解】(1)由題意,根據(jù)表格中的數(shù)據(jù),求得,,,,代入回歸系數(shù)的公式,求得,則,故線性回歸方程為.(2)由(1)可知,當時,,則可以預測產(chǎn)量為(噸)的生產(chǎn)能耗為(噸).【點睛】本題考查了線性回歸方程,需掌握回歸直線過樣本中心點這一特征,考查了學生的計算能力,屬于基礎題.20、(1);(2)11.【解析】

(1)直接利用已知條件求出AB邊上的中點,即可求直線的方程.(2)利用所求出的直線方程利用分割法求出三角形的面積,或者求出及直線AB的方程,可得點C到直線AB的距離,求出三角形的面積.【詳解】(1)∵線段AB的中點D的坐標為,所以,由兩點式方程可得,AB邊上的中線CD所在直線的方程為,即.(2)法1:因為,點A到直線CD的距離是,所以的面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論