版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年福建省東山縣中考四模數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過第()象限.A.一 B.二 C.三 D.四2.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.3.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個4.多項式4a﹣a3分解因式的結(jié)果是()A.a(chǎn)(4﹣a2)B.a(chǎn)(2﹣a)(2+a)C.a(chǎn)(a﹣2)(a+2)D.a(chǎn)(2﹣a)25.關(guān)于x的方程x2﹣3x+k=0的一個根是2,則常數(shù)k的值為()A.1 B.2 C.﹣1 D.﹣26.已知正方形ABCD的邊長為4cm,動點P從A出發(fā),沿AD邊以1cm/s的速度運動,動點Q從B出發(fā),沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發(fā),運動到點D均停止運動,設(shè)運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數(shù)圖象大致是()A. B. C. D.7.如圖,若△ABC內(nèi)接于半徑為R的⊙O,且∠A=60°,連接OB、OC,則邊BC的長為()A. B. C. D.8.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.29.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差10.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.12.小紅沿坡比為1:的斜坡上走了100米,則她實際上升了_____米.13.在Rt△ABC內(nèi)有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.14.用一張扇形紙片圍成一個圓錐的側(cè)面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.15.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據(jù)是__________________________________.16.如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.三、解答題(共8題,共72分)17.(8分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當(dāng)F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結(jié)果保留根號).18.(8分)山地自行車越來越受中學(xué)生的喜愛.一網(wǎng)店經(jīng)營的一個型號山地自行車,今年一月份銷售額為30000元,二月份每輛車售價比一月份每輛車售價降價100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.求二月份每輛車售價是多少元?為了促銷,三月份每輛車售價比二月份每輛車售價降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進(jìn)價是多少元?19.(8分)如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關(guān)于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).20.(8分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.21.(8分)如圖,直線l是線段MN的垂直平分線,交線段MN于點O,在MN下方的直線l上取一點P,連接PN,以線段PN為邊,在PN上方作正方形NPAB,射線MA交直線l于點C,連接BC.(1)設(shè)∠ONP=α,求∠AMN的度數(shù);(2)寫出線段AM、BC之間的等量關(guān)系,并證明.22.(10分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.23.(12分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象的兩個交點.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求直線AB與x軸的交點C的坐標(biāo)及△AOB的面積;(3)求方程的解集(請直接寫出答案).24.如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G,GB=GC.(1)求證:四邊形ABCD是矩形;(1)若△GEF的面積為1.①求四邊形BCFE的面積;②四邊形ABCD的面積為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進(jìn)行判斷直線y=kx-k不經(jīng)過的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過第一、三、四象限,即不經(jīng)過第二象限.故選:B.【點睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).2、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形3、C【解析】
由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對應(yīng)邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,熟練地應(yīng)用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.4、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關(guān)鍵.5、B【解析】
根據(jù)一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關(guān)于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關(guān)于k的新方程,通過解新方程來求k的值是解題的關(guān)鍵.6、B【解析】
根據(jù)題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當(dāng)0≤x≤2時,BQ=2x當(dāng)2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側(cè)時形成的不同圖形,并要根據(jù)圖形列出函數(shù)關(guān)系式.7、D【解析】
延長BO交圓于D,連接CD,則∠BCD=90°,∠D=∠A=60°;又BD=2R,根據(jù)銳角三角函數(shù)的定義得BC=R.【詳解】解:延長BO交⊙O于D,連接CD,則∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,∴BC=R,故選D.【點睛】此題綜合運用了圓周角定理、直角三角形30°角的性質(zhì)、勾股定理,注意:作直徑構(gòu)造直角三角形是解決本題的關(guān)鍵.8、A【解析】試題分析:先根據(jù)折疊的性質(zhì)得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內(nèi)折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了勾股定理.9、A【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關(guān)鍵.10、A【解析】
根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標(biāo)平面內(nèi)的位置關(guān)系,即可判斷.【詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,
∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數(shù)的圖象與系數(shù)的關(guān)系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負(fù)半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點?b=1.二、填空題(本大題共6個小題,每小題3分,共18分)11、50【解析】
由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得
=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案為50【點睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.12、50【解析】
根據(jù)題意設(shè)鉛直距離為x,則水平距離為,根據(jù)勾股定理求出x的值,即可得到結(jié)果.【詳解】解:設(shè)鉛直距離為x,則水平距離為,根據(jù)題意得:,解得:(負(fù)值舍去),則她實際上升了50米,故答案為:50【點睛】本題考查了解直角三角形的應(yīng)用,此題關(guān)鍵是用同一未知數(shù)表示出下降高度和水平前進(jìn)距離.13、1【解析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點睛:本題主要考查相似三角形的判定和性質(zhì)、正方形的性質(zhì),解題的關(guān)鍵在于找到相似三角形,用x的表達(dá)式表示出對應(yīng)邊是解題的關(guān)鍵.14、1【解析】
設(shè)這個圓錐的母線長為xcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設(shè)這個圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.15、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】
利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進(jìn)行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.16、36°或37°.【解析】分析:先過E作EG∥AB,根據(jù)平行線的性質(zhì)可得∠AEF=∠BAE+∠DFE,再設(shè)∠CEF=x,則∠AEC=2x,根據(jù)6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進(jìn)而得到∠C的度數(shù).詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設(shè)∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運用,解決問題的關(guān)鍵是作平行線,解題時注意:兩直線平行,內(nèi)錯角相等.三、解答題(共8題,共72分)17、(1)詳見解析;(2)2;②1或【解析】
(1)想辦法證明∠AMD=∠ADC,∠FMC=∠ADC即可解決問題;(2)①在Rt△OCE中,利用勾股定理構(gòu)建方程即可解決問題;②分兩種情形討論求解即可.【詳解】解:(1)證明:如圖②中,連接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如圖②﹣1中,連接OC.設(shè)⊙O的半徑為r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有兩種情形:MF=FC,F(xiàn)M=MC.如圖③中,當(dāng)FM=FC時,易證明CM∥AD,∴,∴AM=CD=1.如圖④中,當(dāng)MC=MF時,連接MO,延長MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴,∴MH⊥AD,AH=DH,在Rt△AED中,AD=,∴AH=,∵tan∠DAE=,∴OH=,∴MH=2+,在Rt△AMH中,AM=.【點睛】本題考查了圓的綜合題:熟練掌握與圓有關(guān)的性質(zhì)、圓的內(nèi)接正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì);靈活利用全等三角形的性質(zhì);會利用面積的和差計算不規(guī)則幾何圖形的面積.18、(1)二月份每輛車售價是900元;(2)每輛山地自行車的進(jìn)價是600元.【解析】
(1)設(shè)二月份每輛車售價為x元,則一月份每輛車售價為(x+100)元,根據(jù)數(shù)量=總價÷單價,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;(2)設(shè)每輛山地自行車的進(jìn)價為y元,根據(jù)利潤=售價﹣進(jìn)價,即可得出關(guān)于y的一元一次方程,解之即可得出結(jié)論.【詳解】(1)設(shè)二月份每輛車售價為x元,則一月份每輛車售價為(x+100)元,根據(jù)題意得:,解得:x=900,經(jīng)檢驗,x=900是原分式方程的解,答:二月份每輛車售價是900元;(2)設(shè)每輛山地自行車的進(jìn)價為y元,根據(jù)題意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每輛山地自行車的進(jìn)價是600元.【點睛】本題考查了分式方程的應(yīng)用、一元一次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.19、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標(biāo)為:(2,0)【解析】
(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標(biāo)變化是:橫、縱坐標(biāo)都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標(biāo)為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用20、(3)證明見解析;(3)AB=3.【解析】
(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根據(jù)SAS推出△ACE≌△BCD即可;(3)求出AD=5,根據(jù)全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【詳解】證明:(3)如圖,∵△ACB與△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,則∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD==5,∴AB=AD+BD=33+5=3.【點睛】本題考查了全等三角形的判定與性質(zhì),也考查了等腰直角三角形的性質(zhì)和勾股定理的應(yīng)用.考點:3.全等三角形的判定與性質(zhì);3.等腰直角三角形.21、(1)45°(2),理由見解析【解析】
(1)由線段的垂直平分線的性質(zhì)可得PM=PN,PO⊥MN,由等腰三角形的性質(zhì)可得∠PMN=∠PNM=α,由正方形的性質(zhì)可得AP=PN,∠APN=90°,可得∠APO=α,由三角形內(nèi)角和定理可求∠AMN的度數(shù);(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得,,∠MNC=∠ANB=45°,可證△CBN∽△MAN,可得.【詳解】解:(1)如圖,連接MP,∵直線l是線段MN的垂直平分線,∴PM=PN,PO⊥MN∴∠PMN=∠PNM=α∴∠MPO=∠NPO=90°-α,∵四邊形ABNP是正方形∴AP=PN,∠APN=90°∴AP=MP,∠APO=90°-(90°-α)=α∴∠APM=∠MPO-∠APO=(90°-α)-α=90°-2α,∵AP=PM∴,∴∠AMN=∠AMP-∠PMN=45°+α-α=45°(2)理由如下:如圖,連接AN,CN,∵直線l是線段MN的垂直平分線,∴CM=CN,∴∠CMN=∠CNM=45°,∴∠MCN=90°∴,∵四邊形APNB是正方形∴∠ANB=∠BAN=45°∴,∠MNC=∠ANB=45°∴∠ANM=∠BNC又∵∴△CBN∽△MAN∴∴【點睛】本題考查了正方形的性質(zhì),線段垂直平分線的性質(zhì),相似三角形的判定和性質(zhì),添加恰當(dāng)輔助線構(gòu)造相似三角形是本題的關(guān)鍵.22、(1);(2)見解析;(3)存在,2【解析】
(1)利用正方形的性質(zhì)及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當(dāng)最短時,的面積最小,再根據(jù)AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時,的面積最小,當(dāng)時,最短,此時,的面積最小為.【點睛】本題主要考查全等三角形的判定及性質(zhì),平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關(guān)鍵.23、(1)y=﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年C語言程序設(shè)計教案編寫思考
- 革新教學(xué)法:2024年《畫漫畫》教案設(shè)計
- 探索K2教育:《千人糕》2024課件實踐分享
- 2023年西方經(jīng)濟學(xué)考點版本科打印雙面
- 《棗兒》學(xué)術(shù)論文探究
- 第45屆世界技能大賽山西選拔賽技術(shù)文件-機電一體化項目技術(shù)文件
- 2024年肺結(jié)核病防治知識課件
- 科目三考試流程-駕考實操
- 2024年外婆的澎湖灣:地理課件
- 2024年教育技術(shù)發(fā)展:《打瞌睡的房子》課件更新
- 急診搶救室接診流程圖
- 水電機組的運行穩(wěn)定性及水輪機轉(zhuǎn)輪裂紋
- 《自信主題班會》主題班會ppt課件
- 視聽語言考試卷
- 2020年技術(shù)服務(wù)保障措施
- 螺旋箍筋長度計算公式
- 鋼管慣性距計算
- 第八章_噪聲控制技術(shù)——隔聲
- 資金調(diào)撥和內(nèi)部往來管理流程手冊
- 2022考評員工作總結(jié)5篇
- 常用抗癲癇藥物簡介
評論
0/150
提交評論