版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省長春市九臺區(qū)師范高中、實驗高中數(shù)學高一下期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則有A.的圖像關于直線對稱 B.的圖像關于點對稱C.的最小正周期為 D.在區(qū)間內(nèi)單調(diào)遞減2.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.3.為數(shù)列的前n項和,若,則的值為()A.-7 B.-4 C.-2 D.04.為了得到函數(shù)的圖像,只需把函數(shù)的圖像A.向左平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向右平移個長度單位5.已知數(shù)據(jù),2的平均值為2,方差為1,則數(shù)據(jù)相對于原數(shù)據(jù)()A.一樣穩(wěn)定 B.變得比較穩(wěn)定C.變得比較不穩(wěn)定 D.穩(wěn)定性不可以判斷6.已知向量與的夾角為,,,當時,實數(shù)為()A. B. C. D.7.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向8.設,則的取值范圍是()A. B. C. D.9.如果直線l過點(2,1),且在y軸上的截距的取值范圍為(﹣1,2),那么l的斜率k的取值范圍是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)10.已知向量,則向量的夾角為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個等腰三角形的頂點,一底角頂點,另一頂點的軌跡方程是___12.在銳角中,角、、所對的邊為、、,若的面積為,且,,則的弧度為__________.13.已知等差數(shù)列的前項和為,且,,則;14.等比數(shù)列的公比為,其各項和,則______________.15.如圖,正方體中,的中點為,的中點為,為棱上一點,則異面直線與所成角的大小為__________.16.等差數(shù)列中,公差.則與的等差中項是_____(用數(shù)字作答)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設的內(nèi)角的對邊分別為,且滿足.(1)試判斷的形狀,并說明理由;(2)若,試求面積的最大值.18.某中學高二年級的甲、乙兩個班中,需根據(jù)某次數(shù)學預賽成績選出某班的5名學生參加數(shù)學競賽決賽,已知這次預賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學生成績的平均分是83,乙班5名學生成績的中位數(shù)是1.(1)求出x,y的值,且分別求甲、乙兩個班中5名學生成績的方差、,并根據(jù)結果,你認為應該選派哪一個班的學生參加決賽?(2)從成績在85分及以上的學生中隨機抽取2名.求至少有1名來自甲班的概率.19.已知數(shù)列是公差不為0的等差數(shù)列,成等比數(shù)列.(1)求;(2)設,數(shù)列的前n項和為,求20.如圖所示,在三棱柱中,側(cè)棱底面,,D為的中點,.(1)求證:平面;(2)求與所成角的余弦值.21.已知等差數(shù)列{an}滿足a2=0,a6+a8=-10.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
把函數(shù)化簡后再判斷.【詳解】,由正切函數(shù)的性質(zhì)知,A、C、D都錯誤,只有B正確.【點睛】本題考查二倍角公式和正切函數(shù)的性質(zhì).三角函數(shù)的性質(zhì)問題,一般要把函數(shù)化為一個角的一個三角函數(shù)形式,然后結合相應的三角函數(shù)得出結論.2、B【解析】
該幾何體由上下兩部分組成的,上面是一個圓錐,下面是一個正方體,由體積公式直接求解.【詳解】該幾何體由上下兩部分組成的,上面是一個圓錐,下面是一個正方體.∴該幾何體的體積V64.故選:B.【點睛】本題考查了正方體與圓錐的組合體的三視圖還原問題及體積計算公式,考查了推理能力與計算能力,屬于基礎題.3、A【解析】
依次求得的值,進而求得的值.【詳解】當時,;當時,,;當時,;故.故選:A.【點睛】本小題主要考查根據(jù)遞推關系式求數(shù)列每一項,屬于基礎題.4、B【解析】試題分析:記函數(shù),則函數(shù)∵函數(shù)f(x)圖象向右平移單位,可得函數(shù)的圖象∴把函數(shù)的圖象右平移單位,得到函數(shù)的圖象,故選B.考點:函數(shù)y=Asin(ωx+φ)的圖象變換.5、C【解析】
根據(jù)均值定義列式計算可得的和,從而得它們的均值,再由方差公式可得,從而得方差.然后判斷.【詳解】由題可得:平均值為2,由,,所以變得不穩(wěn)定.故選:C.【點睛】本題考查均值與方差的計算公式,考查方差的含義.屬于基礎題.6、B【解析】
利用平面向量數(shù)量積的定義計算出的值,由可得出,利用平面向量數(shù)量積的運算律可求得實數(shù)的值.【詳解】,,向量與的夾角為,,,,解得.故選:B.【點睛】本題考查利用向量垂直求參數(shù),考查計算能力,屬于基礎題.7、A【解析】
通過計算兩個向量的數(shù)量積,然后再判斷兩個向量能否寫成的形式,這樣可以選出正確答案.【詳解】因為,,所以,而不存在實數(shù),使成立,因此與不共線,故本題選A.【點睛】本題考查了兩個平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學運算能力.8、B【解析】
由同向不等式的可加性求解即可.【詳解】解:因為,所以,又,,所以,故選:B.【點睛】本題考查了不等式的性質(zhì),屬基礎題.9、A【解析】
利用直線的斜率公式,求出當直線經(jīng)過點時,直線經(jīng)過點時的斜率,即可得到結論.【詳解】設要求直線的斜率為,當直線經(jīng)過點時,斜率為,當直線經(jīng)過點時,斜率為,故所求直線的斜率為.故選:A.【點睛】本題主要考查直線的斜率公式,屬于基礎題.10、C【解析】試題分析:,設向量的夾角為,考點:向量夾角及向量的坐標運算點評:設夾角為,二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
設出點C的坐標,利用|AB|=|AC|,建立方程,根據(jù)A,B,C三點構成三角形,則三點不共線且B,C不重合,即可求得結論.【詳解】設點的坐標為,則由得,化簡得.∵A,B,C三點構成三角形∴三點不共線且B,C不重合因此頂點的軌跡方程為.故答案為【點睛】本題考查軌跡方程,考查學生的計算能力,屬于基礎題.12、【解析】
利用三角形的面積公式求出的值,結合角為銳角,可得出角的弧度數(shù).【詳解】由三角形的面積公式可知,的面積為,得,為銳角,因此,的弧度數(shù)為,故答案為.【點睛】本題考查三角形面積公式的應用,考查運算求解能力,屬于基礎題.13、1【解析】
若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因為在等差數(shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.14、【解析】
利用等比數(shù)列各項和公式可得出關于的方程,解出即可.【詳解】由于等比數(shù)列的公比為,其各項和,可得,解得.故答案為:.【點睛】本題考查等比數(shù)列中基本量的計算,利用等比數(shù)列各項和公式列等式是關鍵,考查計算能力,屬于基礎題.15、【解析】
根據(jù)題意得到直線MP運動起來構成平面,可得到面,進而得到結果.【詳解】取的中點O連接,,根據(jù)題意可得到直線MP是一條動直線,當點P變動時直線就構成了平面,因為MO均為線段的中點,故得到,四邊形為平行四邊形,面,故得到,又面,進而得到.故夾角為.故答案為.【點睛】這個題目考查的是異面直線的夾角的求法;常見方法有:將異面直線平移到同一平面內(nèi),轉(zhuǎn)化為平面角的問題;或者證明線面垂直進而得到面面垂直,這種方法適用于異面直線垂直的時候.16、5【解析】
根據(jù)等差中項的性質(zhì),以及的值,求出的值即是所求.【詳解】根據(jù)等差中項的性質(zhì)可知,的等差中項是,故.【點睛】本小題主要考查等差中項的性質(zhì),考查等差數(shù)列基本量的計算,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)由,利用正、余弦定理,得,化簡整理即可證明:為直角三角形;(2)利用,,根據(jù)基本不等式可得:,即可求出面積的最大值.試題解析:解法1:(1)∵,由正、余弦定理,得,化簡整理得:,∵,所以,故為直角三角形,且;(2)∵,∴,當且僅當時,上式等號成立,∴.故,即面積的最大值為.解法2(1)由已知:,又∵,,∴,而,∴,∴,故,∴為直角三角形.(2)由(1),∴.∵,∴,∴,令,∵,∴,∴.而在上單調(diào)遞增,∴.18、(3)甲班參加;(4).【解析】
試題分析:(3)由題意知求出x=5,y=4.從而求出乙班學生的平均數(shù)為83,分別求出S34和S44,根據(jù)甲、乙兩班的平均數(shù)相等,甲班的方差小,得到應該選派甲班的學生參加決賽.(4)成績在85分及以上的學生一共有5名,其中甲班有4名,乙班有3名,由此能求出隨機抽取4名,至少有3名來自甲班的概率.試題解析:(3)甲班的平均分為,易知.;又乙班的平均分為,∴;∵,,說明甲班同學成績更加穩(wěn)定,故應選甲班參加.(4)分及以上甲班有人,設為;乙班有人,設為,從這人中抽取人的選法有:,共種,其中甲班至少有名學生的選法有種,則甲班至少有名學生被抽到的概率為.考點:3.古典概型及其概率計算公式;4.莖葉圖.19、(1)(2)【解析】
(1)根據(jù)已知條件求出,再寫出等差數(shù)列的通項得解;(2)利用分組求和求.【詳解】解:(1)設數(shù)列的首項為,公差為,則.因為成等比數(shù)列,所以,化簡得又因為,所以,又因為,所以.所以.(2)根據(jù)(1)可知,【點睛】本題主要考查等差數(shù)列通項的求法,考查等差等比數(shù)列前n項和的計算和分組求和,意在考查學生對這些知識的理解掌握水平,屬于基礎題.20、(1)證明見解析;(2).【解析】
(1)連接,設與相交于點O,連接OD.證明OD為的中位線,得,即可證明;(2)由(1)可知,為與所成的角或其補角,在中,利用余弦定理求解即可【詳解】(1)證明:如圖,連接,設與相交于點O,連接OD.∵四邊形是平行四邊形.∴點O為的中點.∵D為AC的中點,∴OD為的中位線,平面,平面,平面.(2)由(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版門診設備設施租賃與承包合同4篇
- 2025年度航空航天零部件加工與供應分包合同3篇
- 二零二五年度離婚財產(chǎn)分割與子女撫養(yǎng)權分配合同4篇
- 2025年度美團特色團購合作合同范本細則4篇
- 2 24-全國護理專業(yè)教學 資源庫-1738309514230
- 診斷與改進“應知應會”50問
- 2025年度特色培訓學校股份合作發(fā)展合同3篇
- 2025年度校園春游活動團隊旅游合同
- 二零二五年企業(yè)員工出差通訊費用報銷及標準合同3篇
- 2025年度個人信用借款合同隱私保護措施2篇
- 三年級數(shù)學(上)計算題專項練習附答案
- 中醫(yī)診療方案腎病科
- 2025年安慶港華燃氣限公司招聘工作人員14人高頻重點提升(共500題)附帶答案詳解
- 人教版(2025新版)七年級下冊數(shù)學第七章 相交線與平行線 單元測試卷(含答案)
- 中藥飲片培訓課件
- 醫(yī)院護理培訓課件:《早產(chǎn)兒姿勢管理與擺位》
- 《論文的寫作技巧》課件
- 空氣自動站儀器運營維護項目操作說明以及簡單故障處理
- 2022年12月Python-一級等級考試真題(附答案-解析)
- T-CHSA 020-2023 上頜骨缺損手術功能修復重建的專家共識
- Hypermesh lsdyna轉(zhuǎn)動副連接課件完整版
評論
0/150
提交評論