2023-2024學(xué)年江蘇省蘇州市昆山、太倉市達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第1頁
2023-2024學(xué)年江蘇省蘇州市昆山、太倉市達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第2頁
2023-2024學(xué)年江蘇省蘇州市昆山、太倉市達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第3頁
2023-2024學(xué)年江蘇省蘇州市昆山、太倉市達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第4頁
2023-2024學(xué)年江蘇省蘇州市昆山、太倉市達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省蘇州市昆山、太倉市達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.|–|的倒數(shù)是()A.–2 B.– C. D.22.下列運(yùn)算結(jié)果是無理數(shù)的是()A.3× B. C. D.3.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.44.若關(guān)于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a(chǎn)<3B.a(chǎn)>3C.a(chǎn)<﹣3D.a(chǎn)>﹣35.|﹣3|的值是()A.3 B. C.﹣3 D.﹣6.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.7.如圖,在平面直角坐標(biāo)系中,把△ABC繞原點(diǎn)O旋轉(zhuǎn)180°得到△CDA,點(diǎn)A,B,C的坐標(biāo)分別為(﹣5,2),(﹣2,﹣2),(5,﹣2),則點(diǎn)D的坐標(biāo)為()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)8.﹣3的相反數(shù)是()A. B. C. D.9.如圖,BC平分∠ABE,AB∥CD,E是CD上一點(diǎn),若∠C=35°,則∠BED的度數(shù)為()A.70° B.65° C.62° D.60°10.如圖,⊙O中,弦AB、CD相交于點(diǎn)P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°二、填空題(本大題共6個小題,每小題3分,共18分)11.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當(dāng)天南部地區(qū)比北部地區(qū)的平均氣溫高_(dá)____℃.12.已知:如圖,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點(diǎn)D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.13.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點(diǎn).AC=3AD,AB=3AE,點(diǎn)F為BC邊上一點(diǎn),添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)

14.如圖,在中,,,,,,點(diǎn)在上,交于點(diǎn),交于點(diǎn),當(dāng)時,________.15.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.16.如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=a(x+)2+k與y軸的交點(diǎn),點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,則以AB為邊的正方形ABCD的周長為_____.三、解答題(共8題,共72分)17.(8分)在“植樹節(jié)”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學(xué)校植樹活動,規(guī)則如下:在兩個盒子內(nèi)分別裝入標(biāo)有數(shù)字1,2,3,4的四個和標(biāo)有數(shù)字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數(shù)字之和小于5,那么小王去,否則就是小李去.用樹狀圖或列表法求出小王去的概率;小李說:“這種規(guī)則不公平”,你認(rèn)同他的說法嗎?請說明理由.18.(8分)如圖,在?ABCD中,AB=4,AD=5,tanA=,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC以每秒1個單位長度的速度向中點(diǎn)C運(yùn)動,過點(diǎn)P作PQ⊥AB,交折線AD﹣DC于點(diǎn)Q,將線段PQ繞點(diǎn)P順時針旋轉(zhuǎn)90°,得到線段PR,連接QR.設(shè)△PQR與?ABCD重疊部分圖形的面積為S(平方單位),點(diǎn)P運(yùn)動的時間為t(秒).(1)當(dāng)點(diǎn)R與點(diǎn)B重合時,求t的值;(2)當(dāng)點(diǎn)P在BC邊上運(yùn)動時,求線段PQ的長(用含有t的代數(shù)式表示);(3)當(dāng)點(diǎn)R落在?ABCD的外部時,求S與t的函數(shù)關(guān)系式;(4)直接寫出點(diǎn)P運(yùn)動過程中,△PCD是等腰三角形時所有的t值.19.(8分)如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,1)、C(1,1).在圖中以點(diǎn)O為位似中心在原點(diǎn)的另一側(cè)畫出△ABC放大1倍后得到的△A1B1C1,并寫出A1的坐標(biāo);請在圖中畫出△ABC繞點(diǎn)O逆時針旋轉(zhuǎn)90°后得到的△A1B1C1.20.(8分)反比例函數(shù)y=(k≠0)與一次函數(shù)y=mx+b(m≠0)交于點(diǎn)A(1,2k﹣1).求反比例函數(shù)的解析式;若一次函數(shù)與x軸交于點(diǎn)B,且△AOB的面積為3,求一次函數(shù)的解析式.21.(8分)某中學(xué)為了解八年級學(xué)習(xí)體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A、B、C、D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名.22.(10分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點(diǎn)D、C、G在同一條直線上,點(diǎn)E是BC邊上的動點(diǎn),連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.23.(12分)我國南水北調(diào)中線工程的起點(diǎn)是丹江口水庫,按照工程計劃,需對原水庫大壩進(jìn)行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米,參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)24.隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為,圖①中m的值為;求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)絕對值的性質(zhì),可化簡絕對值,根據(jù)倒數(shù)的意義,可得答案.【詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì),分子分母交換位置是求一個數(shù)倒數(shù)的關(guān)鍵.2、B【解析】

根據(jù)二次根式的運(yùn)算法則即可求出答案.【詳解】A選項(xiàng):原式=3×2=6,故A不是無理數(shù);B選項(xiàng):原式=,故B是無理數(shù);C選項(xiàng):原式==6,故C不是無理數(shù);D選項(xiàng):原式==12,故D不是無理數(shù)故選B.【點(diǎn)睛】考查二次根式的運(yùn)算,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.3、D【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點(diǎn)判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】①∵拋物線對稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負(fù)半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點(diǎn),∴b2﹣4ac>0,故③正確;④當(dāng)x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點(diǎn)睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點(diǎn)、拋物線與x軸交點(diǎn)的個數(shù)確定.4、B【解析】試題分析:當(dāng)x=0時,y=-5;當(dāng)x=1時,y=a-1,函數(shù)與x軸在0和1之間有一個交點(diǎn),則a-1>0,解得:a>1.考點(diǎn):一元二次方程與函數(shù)5、A【解析】分析:根據(jù)絕對值的定義回答即可.詳解:負(fù)數(shù)的絕對值等于它的相反數(shù),故選A.點(diǎn)睛:考查絕對值,非負(fù)數(shù)的絕對值等于它本身,負(fù)數(shù)的絕對值等于它的相反數(shù).6、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.7、A【解析】分析:依據(jù)四邊形ABCD是平行四邊形,即可得到BD經(jīng)過點(diǎn)O,依據(jù)B的坐標(biāo)為(﹣2,﹣2),即可得出D的坐標(biāo)為(2,2).詳解:∵點(diǎn)A,C的坐標(biāo)分別為(﹣5,2),(5,﹣2),∴點(diǎn)O是AC的中點(diǎn),∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形,∴BD經(jīng)過點(diǎn)O,∵B的坐標(biāo)為(﹣2,﹣2),∴D的坐標(biāo)為(2,2),故選A.點(diǎn)睛:本題主要考查了坐標(biāo)與圖形變化,圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).8、D【解析】

相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點(diǎn)睛】本題考查相反數(shù),題目簡單,熟記定義是關(guān)鍵.9、A【解析】

由AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等,即可求得∠ABC的度數(shù),又由BC平分∠ABE,即可求得∠ABE的度數(shù),繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點(diǎn)睛】本題考查了平行線的性質(zhì),解題的關(guān)鍵是掌握平行線的性質(zhì)進(jìn)行解答.10、C【解析】分析:欲求∠B的度數(shù),需求出同弧所對的圓周角∠C的度數(shù);△APC中,已知了∠A及外角∠APD的度數(shù),即可由三角形的外角性質(zhì)求出∠C的度數(shù),由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、3【解析】

用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當(dāng)天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.【點(diǎn)睛】本題考查了有理數(shù)的減法運(yùn)算法則,減法運(yùn)算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).12、2﹣π.【解析】試題分析:根據(jù)題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據(jù)∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.13、或【解析】因?yàn)椋?,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點(diǎn)睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉(zhuǎn)化,通過,與相似.這時,柳暗花明,迎刃而解.14、1【解析】

如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設(shè)PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設(shè)PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì)、勾股定理、矩形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,屬于中考??碱}型.15、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.

設(shè)這個圓錐形紙帽的底面半徑為r.

根據(jù)題意,得40π=2πr,

解得r=20cm.故答案是:20.【點(diǎn)睛】解答本題的關(guān)鍵是有確定底面周長=展開圖的弧長這個等量關(guān)系,然后由扇形的弧長公式和圓的周長公式求值.16、1【解析】

根據(jù)題意和二次函數(shù)的性質(zhì)可以求得線段AB的長度,從而可以求得正方形ABCD的周長.【詳解】∵在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=a(x+)2+k與y軸的交點(diǎn),∴點(diǎn)A的橫坐標(biāo)是0,該拋物線的對稱軸為直線x=﹣,∵點(diǎn)B是這條拋物線上的另一點(diǎn),且AB∥x軸,∴點(diǎn)B的橫坐標(biāo)是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周長為:3×4=1,故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、正方形的性質(zhì),解題的關(guān)鍵是找出所求問題需要的條件.三、解答題(共8題,共72分)17、(1);(2)規(guī)則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結(jié)果數(shù),然后根據(jù)概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規(guī)則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中摸出的球上的數(shù)字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規(guī)則不公平.點(diǎn)睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1);(2)(9﹣t);(3)①S=﹣t2+t﹣;②S=﹣t2+1.③S=(9﹣t)2;(3)3或或4或.【解析】

(1)根據(jù)題意點(diǎn)R與點(diǎn)B重合時t+t=3,即可求出t的值;(2)根據(jù)題意運(yùn)用t表示出PQ即可;(3)當(dāng)點(diǎn)R落在□ABCD的外部時可得出t的取值范圍,再根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;(3)根據(jù)等腰三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵將線段PQ繞點(diǎn)P順時針旋轉(zhuǎn)90°,得到線段PR,∴PQ=PR,∠QPR=90°,∴△QPR為等腰直角三角形.當(dāng)運(yùn)動時間為t秒時,AP=t,PQ=PQ=AP?tanA=t.∵點(diǎn)R與點(diǎn)B重合,∴AP+PR=t+t=AB=3,解得:t=.(2)當(dāng)點(diǎn)P在BC邊上時,3≤t≤9,CP=9﹣t,∵tanA=,∴tanC=,sinC=,∴PQ=CP?sinC=(9﹣t).(3)①如圖1中,當(dāng)<t≤3時,重疊部分是四邊形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴=,∴=,∴KM=(t﹣3)=t﹣,∴S=S△PQR﹣S△KBR=×(t)2﹣×(t﹣3)(t﹣)=﹣t2+t﹣.②如圖2中,當(dāng)3<t≤3時,重疊部分是四邊形PQKB.S=S△PQR﹣S△KBR=×3×3﹣×t×t=﹣t2+1.③如圖3中,當(dāng)3<t<9時,重疊部分是△PQK.S=?S△PQC=××(9﹣t)?(9﹣t)=(9﹣t)2.(3)如圖3中,①當(dāng)DC=DP1=3時,易知AP1=3,t=3.②當(dāng)DC=DP2時,CP2=2?CD?,∴BP2=,∴t=3+.③當(dāng)CD=CP3時,t=4.④當(dāng)CP3=DP3時,CP3=2÷,∴t=9﹣=.綜上所述,滿足條件的t的值為3或或4或.【點(diǎn)睛】本題考查四邊形綜合題、動點(diǎn)問題、平行四邊形的性質(zhì)、多邊形的面積、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.19、(1)A(﹣1,﹣6);(1)見解析【解析】試題分析:(1)把每個坐標(biāo)做大1倍,并去相反數(shù).(1)橫縱坐標(biāo)對調(diào),并且把橫坐標(biāo)取相反數(shù).試題解析:解:(1)如圖,△A1B1C1為所作,A(﹣1,﹣6);(1)如圖,△A1B1C1為所作.20、(1)y=;(2)y=﹣或y=【解析】試題分析:(1)把A(1,2k-1)代入y=即可求得結(jié)果;

(2)根據(jù)三角形的面積等于3,求得點(diǎn)B的坐標(biāo),代入一次函數(shù)y=mx+b即可得到結(jié)果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數(shù)的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設(shè)B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函數(shù)的解析式為:y=﹣.所以符合條件的一次函數(shù)解析式為:y=﹣或y=x+.21、(1)50名;(2)16名;見解析;(3)56名.【解析】試題分析:根據(jù)A等級的人數(shù)和百分比求出總?cè)藬?shù);根據(jù)總?cè)藬?shù)和A、B、D三個等級的人數(shù)求出C等級的人數(shù);利用總?cè)藬?shù)乘以D等級人數(shù)的百分比得出答案.試題解析:(1)10÷20%=50(名)答:本次抽樣共抽取了50名學(xué)生.(2)50-10-20-4=16(名)答:測試結(jié)果為C等級的學(xué)生有16名.補(bǔ)全圖形如圖所示:(3)700×(4÷50)=56(名)答:估計該中學(xué)八年級700名學(xué)生中體能測試為D等級的學(xué)生有56名.考點(diǎn):統(tǒng)計圖.22、(1)證明見解析;(2)證明見解析;(3)74.【解析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結(jié)AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結(jié)AC因?yàn)椤鰽CM∽△ABE,則∠ACM=∠B=90°,因?yàn)椤螦CB=∠ECF=45°,所以∠ACM+∠ACB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論