2023-2024學年眉山市重點中學畢業(yè)升學考試模擬卷數學卷含解析_第1頁
2023-2024學年眉山市重點中學畢業(yè)升學考試模擬卷數學卷含解析_第2頁
2023-2024學年眉山市重點中學畢業(yè)升學考試模擬卷數學卷含解析_第3頁
2023-2024學年眉山市重點中學畢業(yè)升學考試模擬卷數學卷含解析_第4頁
2023-2024學年眉山市重點中學畢業(yè)升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年眉山市重點中學畢業(yè)升學考試模擬卷數學卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.2.如圖是由6個完全相同的小長方體組成的立體圖形,這個立體圖形的左視圖是()A. B.C. D.3.廣西2017年參加高考的學生約有365000人,將365000這個數用科學記數法表示為()A.3.65×103 B.3.65×104 C.3.65×105 D.3.65×1064.=()A.±4 B.4 C.±2 D.25.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元6.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數是()A.40° B.65° C.70° D.80°7.某射擊選手10次射擊成績統(tǒng)計結果如下表,這10次成績的眾數、中位數分別是()成績(環(huán))78910次數1432A.8、8 B.8、8.5 C.8、9 D.8、108.下列事件是確定事件的是()A.陰天一定會下雨B.黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門C.打開電視機,任選一個頻道,屏幕上正在播放新聞聯播D.在五個抽屜中任意放入6本書,則至少有一個抽屜里有兩本書9.在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE,BE分別交于點G、H.∠CBE=∠BAD,有下列結論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個 B.2個 C.3個 D.4個10.下列方程中,沒有實數根的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在△ABC中,點D在邊BC上,BD=2CD,,,那么=.12.函數y=中自變量x的取值范圍是___________.13.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.14.如圖,在邊長相同的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB與CD相交于點P,則tan∠APD的值為______.15.已知拋物線y=-x2+mx+2-m,在自變量x的值滿足-1≤x≤2的情況下.若對應的函數值y的最大值為6,則m的值為__________.16.計算:___________.三、解答題(共8題,共72分)17.(8分)某初級中學對畢業(yè)班學生三年來參加市級以上各項活動獲獎情況進行統(tǒng)計,七年級時有48人次獲獎,之后逐年增加,到九年級畢業(yè)時累計共有183人次獲獎,求這兩年中獲獎人次的平均年增長率.18.(8分)經過校園某路口的行人,可能左轉,也可能直行或右轉.假設這三種可能性相同,現有小明和小亮兩人經過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.19.(8分)為了支持大學生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網店,招收5名員工,銷售一種火爆的電子產品,并約定用該網店經營的利潤,逐月償還這筆無息貸款.已知該產品的成本為每件4元,員工每人每月的工資為4千元,該網店還需每月支付其它費用1萬元.該產品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數關系如圖所示.求該網店每月利潤w(萬元)與銷售單價x(元)之間的函數表達式;小王自網店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?20.(8分)如圖,在平面直角坐標系xOy中,一次函數y=kx+b的圖象與反比例函數y=的圖象相交于點A(m,3)、B(–6,n),與x軸交于點C.(1)求一次函數y=kx+b的關系式;(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;(3)若點P在x軸上,且S△ACP=,求點P的坐標.21.(8分)某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:①該產品90天售量(n件)與時間(第x天)滿足一次函數關系,部分數據如下表:時間(第x天)12310…日銷售量(n件)198196194?…②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:時間(第x天)1≤x<5050≤x≤90銷售價格(元/件)x+60100(1)求出第10天日銷售量;(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數表達式,并求出在90天內該產品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.22.(10分)某校為了開闊學生的視野,積極組織學生參加課外讀書活動.“放飛夢想”讀書小組協助老師隨機抽取本校的部分學生,調查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你結合圖中的信息解答下列問題:求被調查的學生人數;補全條形統(tǒng)計圖;已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?23.(12分)化簡:(x+7)(x-6)-(x-2)(x+1)24.如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求證:四邊形ABCD是菱形;過點D作DE⊥BD,交BC的延長線于點E,若BC=5,BD=8,求四邊形ABED的周長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎題型.2、B【解析】

根據題意找到從左面看得到的平面圖形即可.【詳解】這個立體圖形的左視圖是,

故選:B.【點睛】本題考查了簡單組合體的三視圖,解題的關鍵是掌握左視圖所看的位置.3、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:將365000這個數用科學記數法表示為3.65×1.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、B【解析】

表示16的算術平方根,為正數,再根據二次根式的性質化簡.【詳解】解:,故選B.【點睛】本題考查了算術平方根,本題難點是平方根與算術平方根的區(qū)別與聯系,一個正數算術平方根有一個,而平方根有兩個.5、B【解析】試題分析:通過理解題意可知本題的等量關系,即每件作服裝仍可獲利=按成本價提高40%后標價,又以8折賣出,根據這兩個等量關系,可列出方程,再求解.解:設這種服裝每件的成本是x元,根據題意列方程得:x+15=(x+40%x)×80%解這個方程得:x=125則這種服裝每件的成本是125元.故選B.考點:一元一次方程的應用.6、C【解析】

根據平行線性質得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數.【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質和角平分線定義,關鍵是求出∠DAC或∠BAC的度數.7、B【解析】

根據眾數和中位數的概念求解.【詳解】由表可知,8環(huán)出現次數最多,有4次,所以眾數為8環(huán);這10個數據的中位數為第5、6個數據的平均數,即中位數為=8.5(環(huán)),故選:B.【點睛】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.8、D【解析】試題分析:找到一定發(fā)生或一定不發(fā)生的事件即可.A、陰天一定會下雨,是隨機事件;B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門,是隨機事件;C、打開電視機,任選一個頻道,屏幕上正在播放新聞聯播,是隨機事件;D、在學校操場上向上拋出的籃球一定會下落,是必然事件.故選D.考點:隨機事件.9、C【解析】

根據題意和圖形,可以判斷各小題中的結論是否成立,從而可以解答本題.【詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點F是AB的中點,∴FD=AB,FE=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯誤,故選:C.【點睛】本題考查相似三角形的判定與性質、全等三角形的判定與性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.10、B【解析】

分別計算四個方程的判別式的值,然后根據判別式的意義確定正確選項.【詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數根,所以A選項錯誤;

B、△=(-2)2-4×3=-8<0,方程沒有實數根,所以B選項正確;

C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數根,所以C選項錯誤;

D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數根,所以D選項錯誤.

故選:B.【點睛】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0根時,方程有兩個不相等的兩個實數根;當△=0時,方程有兩個相等的兩個實數根;當△<0時,方程無實數根.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

首先利用平行四邊形法則,求得的值,再由BD=2CD,求得的值,即可求得的值.【詳解】∵,,∴=-=-,∵BD=2CD,∴==,∴=+==.故答案為.12、x≥﹣且x≠1【解析】

試題解析:根據題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.13、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質,相似三角形的判定與性質等,找出點E的位置是解題的關鍵.14、1【解析】

首先連接BE,由題意易得BF=CF,△ACP∽△BDP,然后由相似三角形的對應邊成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,繼而求得答案.【詳解】如圖:,連接BE,∵四邊形BCED是正方形,∴DF=CF=12CD,BF=1∴BF=CF,根據題意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=12CF=1在Rt△PBF中,tan∠BPF=BFPF∵∠APD=∠BPF,∴tan∠APD=1.

故答案為:1【點睛】此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.15、m=8或-【解析】

求出拋物線的對稱軸x=-b2a=【詳解】拋物線的對稱軸x=-b當m2<-1,即m<-2時,拋物線在-1≤x≤2時,y隨x的增大而減小,在x=-1時取得最大值,即y=--1當-1≤m2≤2,即-2≤m≤4時,拋物線在-1≤x≤2時,在x=當m2>2,即m>4時,拋物線在-1≤x≤2時,y隨x的增大而增大,在x=2時取得最大值,即y=-2綜上所述,m的值為8或-故答案為:8或-【點睛】考查二次函數的圖象與性質,注意分類討論,不要漏解.16、x+1【解析】

先通分,進行分式的加減法,再將分子進行因式分解,然后約分即可求出結果.【詳解】解:=.故答案是:x+1.【點睛】本題主要考查分式的混合運算,通分、因式分解和約分是解答的關鍵.三、解答題(共8題,共72分)17、25%【解析】

首先設這兩年中獲獎人次的平均年增長率為x,則可得八年級的獲獎人數為48(1+x),九年級的獲獎人數為48(1+x)2;故根據題意可得48(1+x)2=183,即可求得x的值,即可求解本題.【詳解】設這兩年中獲獎人次的平均年增長率為x,根據題意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合題意,舍去).答:這兩年中獲獎人次的年平均年增長率為25%18、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結果數,找出“至少有一人直行”的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數,其中兩人之中至少有一人直行的結果數為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數與總情況數之比.19、(1)當4≤x≤6時,w1=﹣x2+12x﹣35,當6≤x≤8時,w2=﹣x2+7x﹣23;(2)最快在第7個月可還清10萬元的無息貸款.【解析】分析:(1)y(萬件)與銷售單價x是分段函數,根據待定系數法分別求直線AB和BC的解析式,又分兩種情況,根據利潤=(售價﹣成本)×銷售量﹣費用,得結論;(2)分別計算兩個利潤的最大值,比較可得出利潤的最大值,最后計算時間即可求解.詳解:(1)設直線AB的解析式為:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直線AB的解析式為:y=﹣x+8,同理代入B(6,2),C(8,1)可得直線BC的解析式為:y=﹣x+5,∵工資及其他費作為:0.4×5+1=3萬元,∴當4≤x≤6時,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,當6≤x≤8時,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)當4≤x≤6時,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴當x=6時,w1取最大值是1,當6≤x≤8時,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,當x=7時,w2取最大值是1.5,∴==6,即最快在第7個月可還清10萬元的無息貸款.點睛:本題主要考查學生利用待定系數法求解一次函數關系式,一次函數與一次不等式的應用,利用數形結合的思想,是一道綜合性較強的代數應用題,能力要求比較高.20、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)【解析】

(1)利用反比例函數圖象上點的坐標特征可求出點A、B的坐標,再利用待定系數法即可求出直線AB的解析式;(1)根據函數圖像判斷即可;(3)利用一次函數圖象上點的坐標特征可求出點C的坐標,設點P的坐標為(x,0),根據三角形的面積公式結合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出結論.【詳解】(1)∵點A(m,3),B(-6,n)在雙曲線y=上,∴m=1,n=-1,∴A(1,3),B(-6,-1).將(1,3),B(-6,-1)帶入y=kx+b,得:,解得,.∴直線的解析式為y=x+1.(1)由函數圖像可知,當kx+b>時,-6<x<0或1<x;(3)當y=x+1=0時,x=-4,∴點C(-4,0).設點P的坐標為(x,0),如圖,∵S△ACP=S△BOC,A(1,3),B(-6,-1),∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,解得:x1=-6,x1=-1.∴點P的坐標為(-6,0)或(-1,0).【點睛】本題考查了反比例函數與一次函數的交點問題、一次(反比例)函數圖象上點的坐標特征、待定系數法求一次函數解析式以及三角形的面積,解題的關鍵是:(1)根據點的坐標利用待定系數法求出直線AB的解析式;(1)根據函數圖像判斷不等式取值范圍;(3)根據三角形的面積公式以及S△ACP=S△BOC,得出|x+4|=1.21、(1)1件;(2)第40天,利潤最大7200元;(3)46天【解析】試題分析:(1)根據待定系數法解出一次函數解析式,然后把x=10代入即可;(2)設利潤為y元,則當1≤x<50時,y=﹣2x2+160x+4000;當50≤x≤90時,y=﹣120x+12000,分別求出各段上的最大值,比較即可得到結論;(3)直接寫出在該產品銷售的過程中,共有46天銷售利潤不低于5400元.試題解析:解:(1)∵n與x成一次函數,∴設n=kx+b,將x=1,m=198,x=3,m=194代入,得:,解得:,所以n關于x的一次函數表達式為n=-2x+200;當x=10時,n=-2×10+200=1.(2)設銷售該產品每天利潤為y元,y關于x的函數表達式為:當1≤x<50時,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴當x=40時,y有最大值,最大值是7200;當50≤x≤90時,y=-120x+12000,∵-120<0,∴y隨x增大而減小,即當x=50時,y的值最大,最大值是6000;綜上所述:當x=40時,y的值最大,最大值是7200,即在90天內該產品第40天的銷售利潤最大,最大利潤是7200元;(3)在該產品銷售的過程中,共有46天銷售利潤不低于5400元.22

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論