2024屆安徽省合肥市北城片區(qū)市級名校中考數(shù)學(xué)最后一模試卷含解析_第1頁
2024屆安徽省合肥市北城片區(qū)市級名校中考數(shù)學(xué)最后一模試卷含解析_第2頁
2024屆安徽省合肥市北城片區(qū)市級名校中考數(shù)學(xué)最后一模試卷含解析_第3頁
2024屆安徽省合肥市北城片區(qū)市級名校中考數(shù)學(xué)最后一模試卷含解析_第4頁
2024屆安徽省合肥市北城片區(qū)市級名校中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆安徽省合肥市北城片區(qū)市級名校中考數(shù)學(xué)最后一模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各式計算正確的是()A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6C.a(chǎn)3?a=a4 D.(﹣a2b)3=a6b32.一個多邊形的邊數(shù)由原來的3增加到n時(n>3,且n為正整數(shù)),它的外角和()A.增加(n﹣2)×180° B.減?。╪﹣2)×180°C.增加(n﹣1)×180° D.沒有改變3.定義:若點P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個“派生函數(shù)”.例如:點(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題4.若2<<3,則a的值可以是()A.﹣7 B. C. D.125.鄭州某中學(xué)在備考2018河南中考體育的過程中抽取該校九年級20名男生進(jìn)行立定跳遠(yuǎn)測試,以便知道下一階段的體育訓(xùn)練,成績?nèi)缦滤荆撼煽儯▎挝唬好祝?.102.202.252.302.352.402.452.50人數(shù)23245211則下列敘述正確的是()A.這些運動員成績的眾數(shù)是5B.這些運動員成績的中位數(shù)是2.30C.這些運動員的平均成績是2.25D.這些運動員成績的方差是0.07256.下列實數(shù)中,無理數(shù)是()A.3.14 B.1.01001 C. D.7.下列運算正確的是(

)A.a(chǎn)2·a3﹦a6

B.a(chǎn)3+a3﹦a6

C.|-a2|﹦a2

D.(-a2)3﹦a68.?dāng)?shù)軸上分別有A、B、C三個點,對應(yīng)的實數(shù)分別為a、b、c且滿足,|a|>|c|,b?c<0,則原點的位置()A.點A的左側(cè) B.點A點B之間C.點B點C之間 D.點C的右側(cè)9.光年天文學(xué)中的距離單位,1光年大約是9500000000000km,用科學(xué)記數(shù)法表示為A. B. C. D.10.實數(shù)a,b,c,d在數(shù)軸上的對應(yīng)點的位置如圖所示,下列結(jié)論①a<b;②|b|=|d|;③a+c=a;④ad>0中,正確的有()A.4個 B.3個 C.2個 D.1個11.下列計算結(jié)果正確的是()A. B.C. D.12.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,A、B是反比例函數(shù)y=(k>0)圖象上的點,A、B兩點的橫坐標(biāo)分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.14.閱讀理解:引入新數(shù),新數(shù)滿足分配律,結(jié)合律,交換律.已知,那么________.15.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則ba=_____.16.當(dāng)時,直線與拋物線有交點,則a的取值范圍是_______.17.對于函數(shù),我們定義(m、n為常數(shù)).例如,則.已知:.若方程有兩個相等實數(shù)根,則m的值為__________.18.如圖,點A在反比例函數(shù)y=(x>0)上,以O(shè)A為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,點為正的邊上一點(不與點重合),點分別在邊上,且.(1)求證:;(2)設(shè),的面積為,的面積為,求(用含的式子表示);(3)如圖2,若點為邊的中點,求證:.圖1圖220.(6分)已知:AB為⊙O上一點,如圖,,,BH與⊙O相切于點B,過點C作BH的平行線交AB于點E.(1)求CE的長;(2)延長CE到F,使,連結(jié)BF并延長BF交⊙O于點G,求BG的長;(3)在(2)的條件下,連結(jié)GC并延長GC交BH于點D,求證:21.(6分)(2017四川省內(nèi)江市)小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問題:(1)這項被調(diào)查的總?cè)藬?shù)是多少人?(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.22.(8分)計算:﹣16+(﹣)﹣2﹣|﹣2|+2tan60°23.(8分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標(biāo)與直線l的表達(dá)式;(2)①直接寫出點D的坐標(biāo)(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.24.(10分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;求兩次摸到的球的顏色不同的概率.25.(10分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應(yīng)的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).26.(12分)某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊,否則互為反方隊員.若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.27.(12分)如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式=4a2﹣b2,不符合題意;B、原式=3a3,不符合題意;C、原式=a4,符合題意;D、原式=﹣a6b3,不符合題意,故選C.2、D【解析】

根據(jù)多邊形的外角和等于360°,與邊數(shù)無關(guān)即可解答.【詳解】∵多邊形的外角和等于360°,與邊數(shù)無關(guān),∴一個多邊形的邊數(shù)由3增加到n時,其外角度數(shù)的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關(guān)鍵.3、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時,y=0,經(jīng)過原點,不能得出結(jié)論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側(cè),∴存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點,∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進(jìn)過同一點,是真命題.考點:(1)命題與定理;(2)新定義型4、C【解析】

根據(jù)已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數(shù)的大小,估算無理數(shù)大小要用夾逼法.5、B【解析】

根據(jù)方差、平均數(shù)、中位數(shù)和眾數(shù)的計算公式和定義分別對每一項進(jìn)行分析,即可得出答案.【詳解】由表格中數(shù)據(jù)可得:A、這些運動員成績的眾數(shù)是2.35,錯誤;B、這些運動員成績的中位數(shù)是2.30,正確;C、這些運動員的平均成績是2.30,錯誤;D、這些運動員成績的方差不是0.0725,錯誤;故選B.【點睛】考查了方差、平均數(shù)、中位數(shù)和眾數(shù),熟練掌握定義和計算公式是本題的關(guān)鍵,平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.6、C【解析】

先把能化簡的數(shù)化簡,然后根據(jù)無理數(shù)的定義逐一判斷即可得.【詳解】A、3.14是有理數(shù);B、1.01001是有理數(shù);C、是無理數(shù);D、是分?jǐn)?shù),為有理數(shù);故選C.【點睛】本題主要考查無理數(shù)的定義,屬于簡單題.7、C【解析】

根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;合并同類項,只把系數(shù)相加減,字母與字母的次數(shù)不變;同底數(shù)冪相除,底數(shù)不變指數(shù)相減,對各選項計算后利用排除法求解.【詳解】a2·a3﹦a5,故A項錯誤;a3+a3﹦2a3,故B項錯誤;a3+a3﹦-a6,故D項錯誤,選C.【點睛】本題考查同底數(shù)冪加減乘除及乘方,解題的關(guān)鍵是清楚運算法則.8、C【解析】分析:根據(jù)題中所給條件結(jié)合A、B、C三點的相對位置進(jìn)行分析判斷即可.詳解:A選項中,若原點在點A的左側(cè),則,這與已知不符,故不能選A;B選項中,若原點在A、B之間,則b>0,c>0,這與b·c<0不符,故不能選B;C選項中,若原點在B、C之間,則且b·c<0,與已知條件一致,故可以選C;D選項中,若原點在點C右側(cè),則b<0,c<0,這與b·c<0不符,故不能選D.故選C.點睛:理解“數(shù)軸上原點右邊的點表示的數(shù)是正數(shù),原點表示的是0,原點左邊的點表示的數(shù)是負(fù)數(shù),距離原點越遠(yuǎn)的點所表示的數(shù)的絕對值越大”是正確解答本題的關(guān)鍵.9、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:將9500000000000km用科學(xué)記數(shù)法表示為.故選C.【點睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、B【解析】

根據(jù)數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義,可得答案.【詳解】解:由數(shù)軸,得a=-3.5,b=-2,c=0,d=2,①a<b,故①正確;②|b|=|d|,故②正確;③a+c=a,故③正確;④ad<0,故④錯誤;故選B.【點睛】本題考查了實數(shù)與數(shù)軸,利用數(shù)軸上的點表示的數(shù)右邊的總比左邊的大,有理數(shù)的運算,絕對值的意義是解題關(guān)鍵.11、C【解析】

利用冪的乘方、同底數(shù)冪的乘法、合并同類項及零指數(shù)冪的定義分別計算后即可確定正確的選項.【詳解】A、原式,故錯誤;B、原式,故錯誤;C、利用合并同類項的知識可知該選項正確;D、,,所以原式無意義,錯誤,故選C.【點睛】本題考查了冪的運算性質(zhì)及特殊角的三角函數(shù)值的知識,解題的關(guān)鍵是能夠利用有關(guān)法則進(jìn)行正確的運算,難度不大.12、D【解析】

根據(jù)合并同類項的法則,積的乘方,完全平方公式,同底數(shù)冪的乘法的性質(zhì),對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關(guān)的整式運算法則要求學(xué)生很熟練,才能正確求出結(jié)果.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.14、2【解析】

根據(jù)定義即可求出答案.【詳解】由題意可知:原式=1-i2=1-(-1)=2故答案為2【點睛】本題考查新定義型運算,解題的關(guān)鍵是正確理解新定義.15、1【解析】

根據(jù)已知a<<b,結(jié)合a、b是兩個連續(xù)的整數(shù)可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據(jù)無理數(shù)的范圍確定兩個有理數(shù)的值,題中根據(jù)的取值范圍,可以很容易得到其相鄰兩個整數(shù),再結(jié)合已知條件即可確定a、b的值,16、【解析】

直線與拋物線有交點,則可化為一元二次方程組利用根的判別式進(jìn)行計算.【詳解】解:法一:與拋物線有交點則有,整理得解得,對稱軸法二:由題意可知,∵拋物線的頂點為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點,∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【點睛】考查二次函數(shù)圖象的性質(zhì)及交點的問題,此類問題,通??苫癁橐辉畏匠?,利用根的判別式或根與系數(shù)的關(guān)系進(jìn)行計算.17、【解析】分析:根據(jù)題目中所給定義先求,再利用根與系數(shù)關(guān)系求m值.詳解:由所給定義知,,若=0,解得m=.點睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項系數(shù)、一次項系數(shù)和常數(shù)項.

△>0說明方程有兩個不同實數(shù)解,△=0說明方程有兩個相等實數(shù)解,△<0說明方程無實數(shù)解.實際應(yīng)用中,有兩種題型(1)證明方程實數(shù)根問題,需要對△的正負(fù)進(jìn)行判斷,可能是具體的數(shù)直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.18、1.【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設(shè)AP=a,則BP=2a,OA=3a,設(shè)點A的坐標(biāo)為(m,),作AE⊥x軸于點E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標(biāo)為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點睛】本題考查了反比例函數(shù)圖象點的坐標(biāo)特征、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(1)詳見解析;(3)詳見解析.【解析】

(1)根據(jù)兩角對應(yīng)相等的兩個三角形相似即可判斷;

(1)如圖1中,分別過E,F(xiàn)作EG⊥BC于G,F(xiàn)H⊥BC于H,S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,可得S1?S1=ab?BE?CF,由(1)得△BDE∽△CFD,,即BE?FC=BD?CD=ab,即可推出S1?S1=a1b1;

(3)想辦法證明△DFE∽△CFD,推出,即DF1=EF?FC;【詳解】(1)證明:如圖1中,

在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,

∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,

∵∠EDF=∠B,

∴∠DEB=∠FDC,

又∠B=∠C,

∴△BDE∽△CFD.

(1)如圖1中,分別過E,F(xiàn)作EG⊥BC于G,F(xiàn)H⊥BC于H,

S1=?BD?EG=?BD?EG=?a?BE?sin60°=?a?BE,S1=?CD?FH=?b?CF,

∴S1?S1=ab?BE?CF

由(1)得△BDE∽△CFD,

∴,即BE?FC=BD?CD=ab,

∴S1?S1=a1b1.(3)由(1)得△BDE∽△CFD,

∴,

又BD=CD,

∴,

又∠EDF=∠C=60°,

∴△DFE∽△CFD,

∴,即DF1=EF?FC.【點睛】本題考查了相似形綜合題、等邊三角形的性質(zhì)、相似三角形的判定和性質(zhì)、三角形的面積等知識,解題的關(guān)鍵是正確尋找相似三角形的相似的條件.20、(1)CE=4;(2)BG=8;(3)證明見解析.【解析】

(1)只要證明△ABC∽△CBE,可得,由此即可解決問題;

(2)連接AG,只要證明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解決問題;

(3)通過計算首先證明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可證明.【詳解】解:(1)∵BH與⊙O相切于點B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直徑,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)連接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【點睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理的應(yīng)用,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.21、(1)50;(2)108°;(3).【解析】分析:(1)根據(jù)B組的人數(shù)和所占的百分比,即可求出這次被調(diào)查的總?cè)藬?shù),從而補(bǔ)全統(tǒng)計圖;用360乘以A組所占的百分比,求出A組的扇形圓心角的度數(shù),再用總?cè)藬?shù)減去A、B、D組的人數(shù),求出C組的人數(shù);(2)畫出樹狀圖,由概率公式即可得出答案.本題解析:解:(1)調(diào)查的總?cè)藬?shù)是:19÷38%=50(人).C組的人數(shù)有50-15-19-4=12(人),補(bǔ)全條形圖如圖所示.(2)畫樹狀圖如下.共有12種等可能的結(jié)果,恰好選中甲的結(jié)果有6種,∴P(恰好選中甲)=.點睛:本題考查了列表法與樹狀圖、條形統(tǒng)計圖的綜合運用.熟練掌握畫樹狀圖法,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.22、1+3.【解析】

先根據(jù)乘方、負(fù)指數(shù)冪、絕對值、特殊角的三角函數(shù)值分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】﹣16+(﹣)﹣2﹣|﹣2|+2tan60°=﹣1+4﹣(2﹣)+2,=﹣1+4﹣2++2,=1+3.【點睛】本題主要考查了實數(shù)的綜合運算能力,解決此類題目的關(guān)鍵是熟記特殊角的三角函數(shù)值,熟練掌握負(fù)整數(shù)指數(shù)冪、二次根式、絕對值等考點的運算法則.23、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當(dāng)y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達(dá)式;(2)分當(dāng)點M在AO上運動時,當(dāng)點M在OB上運動時,進(jìn)行討論可求D點坐標(biāo),將D點坐標(biāo)代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當(dāng)點M在AO上運動時,即0<t<3時,當(dāng)點M在OB上運動時,即3≤t≤4時,進(jìn)行討論可求P點坐標(biāo).【詳解】(1)當(dāng)y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設(shè)直線l的表達(dá)式為y=kx+b,將B,C兩點坐標(biāo)代入得b=mk﹣,故直線l的表達(dá)式為y=﹣x+;(2)當(dāng)點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當(dāng)點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標(biāo)代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M(jìn)在AB上運動,∴當(dāng)CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最??;(3)當(dāng)點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當(dāng)點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強(qiáng),有一定的難度.24、(1)詳見解析;(2).【解析】試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果;(2)由(1)中樹狀圖可求得兩次摸到的球的顏色不同的情況有4種,再利用概率公式求解即可求得答案.試題解析:(1)如圖:,所有可能的結(jié)果為(白1,白2)、(白1,紅)、(白2,白1)、(白2,紅)、(紅,白1)、(紅,白2);(2)共有6種情況,兩次摸到的球的顏色不同的情況有4種,概率為.25、(1)是;(2)見解析;(3)150°.【解析】

(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論