版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市廣雅中學(xué)2025屆九上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.下列不是中心對稱圖形的是()A. B. C. D.2.關(guān)于反比例函數(shù),下列說法不正確的是()A.函數(shù)圖象分別位于第一、第三象限B.當(dāng)x>0時,y隨x的增大而減小C.若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2D.函數(shù)圖象經(jīng)過點(1,2)3.如圖,點B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數(shù)是()A.50° B.60° C.80° D.100°4.如圖,將△ABC繞點C順時針旋轉(zhuǎn),點B的對應(yīng)點為點E,點A的對應(yīng)點為點D,當(dāng)點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數(shù)是()A. B. C. D.5.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且∠D=40°,則∠PCA等于()A.50° B.60° C.65° D.75°6.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正五邊形7.一元二次方程的一次項系數(shù)是()A. B. C. D.8.下面四組線段中不能成比例線段的是()A.、、、 B.、、、 C.、、、 D.、、、9.如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC="4"cm,以點C為圓心,以2cm的長為半徑作圓,則⊙C與AB的位置關(guān)系是().A.相離 B.相切 C.相交 D.相切或相交10.如圖,在矩形中,,,過對角線交點作交于點,交于點,則的長是()A.1 B. C.2 D.11.關(guān)于的二次方程的一個根是0,則a的值是()A.1 B.-1 C.1或-1 D.0.512.如圖,是的直徑,四邊形內(nèi)接于,若,則的周長為()A. B. C. D.二、填空題(每題4分,共24分)13.在中,,,,圓在內(nèi)自由移動.若的半徑為1,則圓心在內(nèi)所能到達的區(qū)域的面積為______.14.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=2:3,則△ADE與△ABC的面積之比為________.15.已知二次函數(shù)y=x2﹣2mx(m為常數(shù)),當(dāng)﹣1≤x≤2時,函數(shù)值y的最小值為﹣2,則m的值是_____.16.某校九年級學(xué)生參加體育測試,其中10人的引體向上成績?nèi)缦卤恚和瓿梢w向上的個數(shù)78910人數(shù)1234這10人完成引體向上個數(shù)的中位數(shù)是___________17.若方程x2﹣2x﹣4=0的兩個實數(shù)根為a,b,則-a2-b2的值為_________。18.某廠四月份生產(chǎn)零件50萬個,已知五、六月份平均每月的增長率是20%,則第二季度共生產(chǎn)零件_____萬個.三、解答題(共78分)19.(8分)一個不透明的口袋中有1個大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-1,2,-3,1.(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________.(2)搖勻后先從中任意摸出1個球(不放回),再從余下的3個球中任意摸出1個球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.20.(8分)如圖,已知直線交于,兩點;是的直徑,點為上一點,且平分,過作,垂足為.(1)求證:為的切線;(2)若,的直徑為10,求的長.21.(8分)(1)計算:;(2)解方程:.22.(10分)二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:(1)方程ax2+bx+c=0的兩個根為(2)y隨x的增大而減小的自變量x的取值范圍為;(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根時,k的取值范圍為;(4)求出此拋物線的解析式.23.(10分)已知:△ABC在平面直角坐標(biāo)系內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是__________;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1;四邊形AA2C2C的面積是__________平方單位.24.(10分)如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.(1)求證:四邊形AECF是菱形;(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)25.(12分)如圖,拋物線y=﹣x2+x+2與x軸交于點A,點B,與y軸交于點C,點D與點C關(guān)于x軸對稱,點P是x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線1交拋物線于點Q.(1)求點A、點B、點C的坐標(biāo);(2)當(dāng)點P在線段OB上運動時,直線1交直線BD于點M,試探究m為何值時,四邊形CQMD是平行四邊形;(3)點P在線段AB上運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.26.如圖,?ABCD中,點E,F(xiàn)分別是BC和AD邊上的點,AE垂直平分BF,交BF于點P,連接EF,PD.(1)求證:平行四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)中心對稱圖形的定義,逐一判斷選項,即可.【詳解】∵A是軸對稱圖形,不是中心對稱圖形,∴A符合題意,∵B是中心對稱圖形,∴B不符合題意,∵C是中心對稱圖形,∴C不符合題意,∵D是中心對稱圖形,∴D不符合題意,故選A.【點睛】本題主要考查中心對稱圖形的定義,掌握中心對稱圖形的定義是解題的關(guān)鍵.2、C【分析】根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征對D進行判斷;根據(jù)反比例函數(shù)的性質(zhì)對A、B、C進行判斷.【詳解】A.k=2>0,則雙曲線的兩支分別位于第一、第三象限,所以A選項的說法正確;B.當(dāng)x>0時,y隨著x的增大而減小,所以B選項的說法正確;C.若x1<0,x2>0,則y2>y1,所以C選項的說法錯誤;D.把x=1代入得y=2,則點(1,2)在的圖象上,所以D選項的說法正確.故選C.【點睛】本題考查了反比例函數(shù)的性質(zhì):反比例函數(shù)(k≠0)的圖象是雙曲線;當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減??;當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.3、D【分析】首先圓上取一點A,連接AB,AD,根據(jù)圓的內(nèi)接四邊形的性質(zhì),即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數(shù),再根據(jù)圓周角的性質(zhì),即可求得答案.【詳解】圓上取一點A,連接AB,AD,∵點A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故選D.【點睛】此題考查了圓周角的性質(zhì)與圓的內(nèi)接四邊形的性質(zhì).此題比較簡單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.4、D【詳解】由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì):①對應(yīng)點到旋轉(zhuǎn)中心的距離相等.②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.③旋轉(zhuǎn)前、后的圖形全等.5、C【分析】根據(jù)切線的性質(zhì),由PD切⊙O于點C得到∠OCD=90°,再利互余計算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根據(jù)三角形外角性質(zhì)計算∠PCA的度數(shù).【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故選C.【點睛】本題考查了切線的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、三角形外角性質(zhì)等知識;熟練掌握切線的性質(zhì)與三角形外角性質(zhì)是解題的關(guān)鍵.6、B【解析】根據(jù)中心對稱圖形和軸對稱圖形的概念對各項分析判斷即可.【詳解】平行四邊形是中心對稱圖形,但不是軸對稱圖形,故A錯誤;圓既是軸對稱圖形又是中心對稱圖形,故B正確;等邊三角形是軸對稱圖形,但不是中心對稱圖形,故C錯誤;正五邊形是軸對稱圖形,但不是中心對稱圖形,故D錯誤.故答案為:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握其定義是解題的關(guān)鍵.7、C【分析】根據(jù)一元二次方程的一般式判斷即可.【詳解】解:該方程的一次項系數(shù)為.故選:【點睛】本題考查的是一元二次方程的項的系數(shù),不是一般式的先化成一般式再判斷.8、B【分析】根據(jù)成比例線段的概念,對選項進行一一分析,即可得出答案.【詳解】A.2×6=3×4,能成比例;B.4×10≠5×6,不能成比例;C.1×=×,能成比例;D.2×=×,能成比例.故選B.【點睛】本題考查了成比例線段的概念.在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段.9、B【分析】作CD⊥AB于點D.根據(jù)三角函數(shù)求CD的長,與圓的半徑比較,作出判斷.【詳解】解:作CD⊥AB于點D.
∵∠B=30°,BC=4cm,∴即CD等于圓的半徑.
∵CD⊥AB,
∴AB與⊙C相切.
故選:B.10、B【分析】連接,由矩形的性質(zhì)得出,,,,由線段垂直平分線的性質(zhì)得出,設(shè),則,在中,由勾股定理得出方程,解方程即可.【詳解】如圖:連接,∵四邊形是矩形,∴,,,,∵,∴,設(shè),則,在中,由勾股定理得:,解得:,即;故選B.【點睛】本題考查了矩形的性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.11、B【分析】把代入可得,根據(jù)一元二次方程的定義可得,從而可求出的值.【詳解】把代入,得:,解得:,∵是關(guān)于x的一元二次方程,∴,即,∴的值是,故選:B.【點睛】本題考查了對一元二次方程的定義,一元二次方程的解,以及一元二次方程的解法等知識點的理解和運用,注意隱含條件.12、C【分析】如圖,連接OD、OC.根據(jù)圓心角、弧、弦的關(guān)系證得△AOD是等邊三角形,則⊙O的半徑長為BC=4cm;然后由圓的周長公式進行計算.【詳解】解:如圖,連接OC、OD.∵AB是⊙O的直徑,四邊形ABCD內(nèi)接于⊙O,BC=CD=DA=4,∴弧AD=弧CD=弧BC,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等邊三角形,∴OA=AD=4,∴⊙O的周長=2×4π=8π.故選:C.【點睛】本題考查了圓心角、弧、弦的關(guān)系,等邊三角形的判定與性質(zhì).在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對弦的弦心距也相等,即四者有一個相等,則其它三個都相等..二、填空題(每題4分,共24分)13、24【分析】根據(jù)題意做圖,圓心在內(nèi)所能到達的區(qū)域為△EFG,先求出AB的長,延長BE交AC于H點,作HM⊥AB于M,根據(jù)圓的性質(zhì)可知BH平分∠ABC,故CH=HM,設(shè)CH=x=HM,根據(jù)Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K點,利用△BEK∽△BHC,求出BK的長,即可求出EF的長,再根據(jù)△EFG∽△BCA求出FG,即可求出△EFG的面積.【詳解】如圖,由題意點O所能到達的區(qū)域是△EFG,連接BE,延長BE交AC于H點,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根據(jù)圓的性質(zhì)可知BH平分∠ABC∴故CH=HM,設(shè)CH=x=HM,則AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,F(xiàn)G∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圓心在內(nèi)所能到達的區(qū)域的面積為FG×EF=×8×6=24,故答案為24.【點睛】此題主要考查相似三角形的判定與性質(zhì)綜合,解題的關(guān)鍵是熟知勾股定理、相似三角形的判定與性質(zhì).14、4:1【解析】由DE與BC平行,得到兩對同位角相等,利用兩對角相等的三角形相似得到三角形ADE與三角形ABC相似,利用相似三角形的面積之比等于相似比的平方即可得到結(jié)果.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴S△ADE:S△ABC=(AD:AB)2=4:1.故答案為:4:1.【點睛】本題考查了相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.15、﹣1.5或2【解析】將二次函數(shù)配方成頂點式,分m<-1、m>2和-1≤m≤2三種情況,根據(jù)y的最小值為-2,結(jié)合二次函數(shù)的性質(zhì)求解可得.【詳解】y=x2-2mx=(x-m)2-m2,
①若m<-1,當(dāng)x=-1時,y=1+2m=-2,
解得:m=-32=-1.5;
②若m>2,當(dāng)x=2時,y=4-4m=-2,
解得:m=32<2(舍);
③若-1≤m≤2,當(dāng)x=m時,y=-m2=-2,
解得:m=2或m=-2<-1(舍),
∴m的值為-1.5或2,
故答案為:﹣1.5或【點睛】本題考查了二次函數(shù)的最值,根據(jù)二次函數(shù)的增減性分類討論是解題的關(guān)鍵.16、1【分析】將數(shù)據(jù)由小排到大,再找到中間的數(shù)值,即可求得中位數(shù),奇數(shù)個數(shù)中位數(shù)是中間一個數(shù),偶數(shù)個數(shù)中位數(shù)是中間兩個數(shù)的平均數(shù)?!驹斀狻拷猓簩?0個數(shù)據(jù)由小到大排序:7、8、8、1、1、1、10、10、10、10,處于這組數(shù)據(jù)中間位置的數(shù)是1、1,那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是(1+1)÷2=1.
所以這組同學(xué)引體向上個數(shù)的中位數(shù)是1.
故答案為:1.【點睛】本題為統(tǒng)計題,考查中位數(shù)的意義,解題的關(guān)鍵是準(zhǔn)確認(rèn)識表格.17、-12【分析】根據(jù)一元二次方程的解及根與系數(shù)的關(guān)系,得出兩根之和與兩根之積,再將待求式利用完全平方公式表示成關(guān)于兩根之和與兩根之積的式子,最后代入求值即可.【詳解】解:∵方程x2﹣2x﹣4=0的兩個實數(shù)根為,∴,∴=-4-8=-12.故答案為:-12.【點睛】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,將待求式利用完全平方公式表示成關(guān)于兩根之和與兩根之積的式子是解題的關(guān)鍵.18、1【分析】由該廠四月份生產(chǎn)零件50萬個及五、六月份平均每月的增長率是20%,可得出該廠五月份生產(chǎn)零件50×(1+20%)萬個、六月份生產(chǎn)零件50×(1+20%)2萬個,將三個月份的生產(chǎn)量相加即可求出結(jié)論.【詳解】解:50+50×(1+20%)+50×(1+20%)2=1(萬個).故答案為:1.【點睛】本題考查了列代數(shù)式以及有理數(shù)的混合運算,根據(jù)各月份零件的生產(chǎn)量,求出第二季度的總產(chǎn)量是解題的關(guān)鍵.三、解答題(共78分)19、(1);(2)【分析】(1)直接利用概率公式計算;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的結(jié)果數(shù),然后根據(jù)公式求解.【詳解】(1)搖勻后任意摸出1個球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率;故答案為;(2)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的結(jié)果數(shù)為8,所以兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.【點睛】本題考查了列表法與樹狀圖法,解題的關(guān)鍵是掌握列表法與樹狀圖法求公式.20、(1)連結(jié)OC,證明見詳解,(2)AB=1.【分析】(1)連接OC,根據(jù)題意可證得∠CAD+∠DCA=30°,再根據(jù)角平分線的性質(zhì),得∠DCO=30°,則CD為⊙O的切線;(2)過O作OF⊥AB,則∠OCD=∠CDA=∠OFD=30°,得四邊形OCDF為矩形,設(shè)AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(1-x)2=25,從而求得x的值,由勾股定理得出AB的長.【詳解】(1)連接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO為⊙O半徑,∴CD為⊙O的切線;(2)過O作OF⊥AB,垂足為F,∴∠OCD=∠CDA=∠OFD=30°,∴四邊形DCOF為矩形,∴OC=FD,OF=CD.∵DC+DA=1,設(shè)AD=x,則OF=CD=1-x,∵⊙O的直徑為10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(1-x)2=25,化簡得x2-11x+18=0,解得x1=2,x2=3.∵CD=1-x大于0,故x=3舍去,∴x=2,從而AD=2,AF=5-2=3,∵OF⊥AB,由垂徑定理知,F(xiàn)為AB的中點,∴AB=2AF=1.【點睛】本題考查切線的證法與弦長問題,涉及切線的判定和性質(zhì);.勾股定理;矩形的判定和性質(zhì)以及垂徑定理的知識,關(guān)鍵掌握好這些知識并靈活運用解決問題.21、(1);(2),【分析】(1)利用特殊角的三角函數(shù)值計算即可;(2)利用因式分解法解一元二次方程即可.【詳解】(1)原式=(2)原方程可變形為或【點睛】本題主要考查特殊角的三角函數(shù)值及解一元二次方程,掌握特殊角的三角函數(shù)值及因式分解法是解題的關(guān)鍵.22、(1)x1=1,x2=1;(2)x>2;(1)k<2;(4).【分析】(1)利用二次函數(shù)與x軸的交點坐標(biāo)與對應(yīng)一元二次方程的解的關(guān)系即可寫出;(2)由圖像可知,在對稱軸的右側(cè),y隨x的增大而減小;(1)方程ax2+bx+c=k有兩個不相等的實數(shù)根,即函數(shù)y=ax2+bx+c(a≠0)與y=k有兩個交點,畫圖分析即可;’(4)由圖像可知:該拋物線的頂點是(2,2),過(1,0),設(shè)拋物線解析式為:,把(1,0)代入,求出a即可.【詳解】解:(1)當(dāng)y=0時,函數(shù)圖象與x軸的兩個交點的橫坐標(biāo)即為方程ax2+bx+c=0的兩個根,由圖可知,方程的兩個根為x1=1,x2=1.故答案為:x1=1,x2=1.(2)根據(jù)函數(shù)圖象,在對稱軸的右側(cè),y隨x的增大而減小,此時,x>2,故答案為:x>2(1)方程ax2+bx+c=k有兩個不相等的實數(shù)根,即函數(shù)y=ax2+bx+c(a≠0)與y=k有兩個交點,如圖所示:當(dāng)k>2時,y=ax2+bx+c(a≠0)與y=k無交點;當(dāng)k=2時,y=ax2+bx+c(a≠0)與y=k只有一個交點;當(dāng)k<2時,函數(shù)y=ax2+bx+c(a≠0)與y=k有兩個交點,故當(dāng)k<2時,方程ax2+bx+c=k有兩個不相等的實數(shù)根.故答案為:k<2.(4)由圖像可知:該拋物線的頂點是(2,2),過(1,0),∴設(shè)拋物線解析式為:把(1,0)代入得:,∴,∴,∴拋物線解析式為.【點睛】此題考查了二次函數(shù)與x軸的交點坐標(biāo)與對應(yīng)一元二次方程的解的關(guān)系、通過圖像觀察拋物線的增減性、利用畫圖解決拋物線與直線的交點個數(shù)問題、求函數(shù)解析式,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)畫圖見解析,(2,–2);(2)畫圖見解析,7.1.【解析】(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標(biāo)即可;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標(biāo)即可;根據(jù)四邊形的面積等于兩個三角形面積之和解答即可.【詳解】(1)如圖所示,畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是(2,﹣2);(2)如圖所示,以B為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,四邊形AA2C2C的面積是=12故答案為:(1)(2,﹣2);(2)7.1.【點睛】本題考查了作圖﹣位似變換與平移變換,熟練掌握位似變換與平移變換的性質(zhì)是解答本題的關(guān)鍵.24、(1)證明見解析(2)2【解析】試題分析:(1)由過AC的中點O作EF⊥AC,根據(jù)線段垂直平分線的性質(zhì),可得AF=CF,AE=CE,OA=OC,然后由四邊形ABCD是矩形,易證得△AOF≌△COE,則可得AF=CE,繼而證得結(jié)論;(2)由四邊形ABCD是矩形,易求得CD的長,然后利用三角函數(shù)求得CF的長,繼而求得答案.試題解析:(1)∵O是AC的中點,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四邊形AECF是菱形;(2)∵四邊形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四邊形AECF是菱形,∴CE=CF=2,∴四邊形AECF是的面積為:EC?AB=2.考點:1.矩形的性質(zhì);2.菱形的判定與性質(zhì)3.三角函數(shù).25、(1)A(﹣1,0),B(4,0),C(0,2);(2)m=2時,四邊形CQMD是平行四邊形;(3)存在,點Q(3,2)或(﹣1,0).【分析】(1)令拋物線關(guān)系式中的x=0或y=0,分別求出y、x的值,進而求出與x軸,y軸的交點坐標(biāo);(2)用m表示出點Q,M的縱坐標(biāo),進而表示QM的長,使CD=QM,即可求出m的值;(3)分三種情況進行解答,即①∠MBQ=90°,②∠MQB=90°,③∠QMB=90°分別畫出相應(yīng)圖形進行解答.【詳解】解:(1)拋物線y=﹣x2+x+2,當(dāng)x=0時,y=2,因此點C(0,2),當(dāng)y=0時,即:﹣x2+x+2=0,解得x1=4,x2=﹣1,因此點A(﹣1,0),B(4,0),故:A(﹣1,0),B(4,0),C(0,2);(2)∵點D與點C關(guān)于x軸對稱,∴點D(0,﹣2),CD=4,設(shè)直線BD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度綠色能源項目投資定金合同附屬協(xié)議書2篇
- 二零二五年度權(quán)威解讀!欠條法律風(fēng)險防范及處理合同3篇
- 二零二五年度白酒定制生產(chǎn)與品牌發(fā)展合同2篇
- 二零二五年度高鐵安裝工程設(shè)備磨損保險合同2篇
- 2025年度西餐廳經(jīng)營管理權(quán)租賃合同3篇
- 二零二五年度航空貨運代理航空貨物包裝材料供應(yīng)合同3篇
- 展會展臺拆除合同(2篇)
- 小區(qū)道路工程承包合同(2篇)
- 2025年餐飲食材配送與售后服務(wù)合同協(xié)議3篇
- 二零二五年度航空航天零部件耗材采購合同范本3篇
- 幼兒園反恐防暴技能培訓(xùn)內(nèi)容
- 食品企業(yè)質(zhì)檢員聘用合同
- 中醫(yī)診所內(nèi)外部審計制度
- 自然辯證法學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年國家危險化學(xué)品經(jīng)營單位安全生產(chǎn)考試題庫(含答案)
- 護理員技能培訓(xùn)課件
- 家庭年度盤點模板
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題集錦(頻考類試題)帶答案
- 試卷中國電子學(xué)會青少年軟件編程等級考試標(biāo)準(zhǔn)python三級練習(xí)
- 公益慈善機構(gòu)數(shù)字化轉(zhuǎn)型行業(yè)三年發(fā)展洞察報告
評論
0/150
提交評論