2024屆浙江省慈溪市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第1頁(yè)
2024屆浙江省慈溪市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第2頁(yè)
2024屆浙江省慈溪市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第3頁(yè)
2024屆浙江省慈溪市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第4頁(yè)
2024屆浙江省慈溪市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆浙江省慈溪市達(dá)標(biāo)名校中考數(shù)學(xué)全真模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤22.已知x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,下列結(jié)論一定正確的是()A.x1≠x2 B.x1+x2>0 C.x1?x2>0 D.x1<0,x2<03.中國(guó)在第二十三屆冬奧會(huì)閉幕式上奉獻(xiàn)了《2022相約北京》的文藝表演,會(huì)后表演視頻在網(wǎng)絡(luò)上推出,即刻轉(zhuǎn)發(fā)量就超過(guò)810000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1044.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°5.如圖,PA和PB是⊙O的切線,點(diǎn)A和B是切點(diǎn),AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°6.如圖,已知直線PQ⊥MN于點(diǎn)O,點(diǎn)A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點(diǎn)C,使△ABC是等腰三角形,則這樣的C點(diǎn)有()A.3個(gè)B.4個(gè)C.7個(gè)D.8個(gè)7.已知反比例函數(shù)y=的圖象位于第一、第三象限,則k的取值范圍是()A.k>8 B.k≥8 C.k≤8 D.k<88.“一般的,如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.——蘇科版《數(shù)學(xué)》九年級(jí)(下冊(cè))P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實(shí)數(shù)根的情況是()A.有三個(gè)實(shí)數(shù)根 B.有兩個(gè)實(shí)數(shù)根 C.有一個(gè)實(shí)數(shù)根 D.無(wú)實(shí)數(shù)根9.根據(jù)中國(guó)鐵路總公司3月13日披露,2018年鐵路春運(yùn)自2月1日起至3月12日止,為期40天全國(guó)鐵路累計(jì)發(fā)送旅客3.82億人次.3.82億用科學(xué)記數(shù)法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×101010.如圖,是的直徑,弦,垂足為點(diǎn),點(diǎn)是上的任意一點(diǎn),延長(zhǎng)交的延長(zhǎng)線于點(diǎn),連接.若,則等于()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.不等式組有2個(gè)整數(shù)解,則m的取值范圍是_____.12.定義一種新運(yùn)算:x*y=,如2*1==3,則(4*2)*(﹣1)=_____.13.如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.14.如果一個(gè)直角三角形的兩條直角邊的長(zhǎng)分別為5、12,則斜邊上的高的長(zhǎng)度為______.15.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.16.不等式組的最大整數(shù)解是__________.17.如圖,點(diǎn)E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點(diǎn)F,∠CDE的平分線交EF于點(diǎn)G,AE=2DG.若BC=8,則AF=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長(zhǎng)交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.(1)當(dāng)CM:CB=1:4時(shí),求CF的長(zhǎng).(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.(3)當(dāng)△ABM∽△EFN時(shí),求CM的長(zhǎng).19.(5分)如圖,用細(xì)線懸掛一個(gè)小球,小球在豎直平面內(nèi)的A、C兩點(diǎn)間來(lái)回?cái)[動(dòng),A點(diǎn)與地面距離AN=14cm,小球在最低點(diǎn)B時(shí),與地面距離BM=5cm,∠AOB=66°,求細(xì)線OB的長(zhǎng)度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(8分)解方程:.21.(10分)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學(xué)校準(zhǔn)備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠(yuǎn),并且到兩條路的距離也一樣遠(yuǎn),請(qǐng)你幫助畫出燈柱的位置P.(不寫畫圖過(guò)程,保留作圖痕跡)22.(10分)如圖,已知⊙O,請(qǐng)用尺規(guī)做⊙O的內(nèi)接正四邊形ABCD,(保留作圖痕跡,不寫做法)23.(12分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<90°)得到矩形AEFG.延長(zhǎng)CB與EF交于點(diǎn)H.(1)求證:BH=EH;(2)如圖2,當(dāng)點(diǎn)G落在線段BC上時(shí),求點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng).24.(14分)如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點(diǎn)M為上一動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),射線AM與射線EC交于點(diǎn)F.(1)如圖②,當(dāng)F在EC的延長(zhǎng)線上時(shí),求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(zhǎng)(結(jié)果保留根號(hào)).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D2、A【解析】分析:A、根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△>0,由此即可得出x1≠x2,結(jié)論A正確;B、根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=a,結(jié)合a的值不確定,可得出B結(jié)論不一定正確;C、根據(jù)根與系數(shù)的關(guān)系可得出x1?x2=﹣2,結(jié)論C錯(cuò)誤;D、由x1?x2=﹣2,可得出x1<0,x2>0,結(jié)論D錯(cuò)誤.綜上即可得出結(jié)論.詳解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,結(jié)論A正確;B、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1+x2=a,∵a的值不確定,∴B結(jié)論不一定正確;C、∵x1、x2是關(guān)于x的方程x2﹣ax﹣2=0的兩根,∴x1?x2=﹣2,結(jié)論C錯(cuò)誤;D、∵x1?x2=﹣2,∴x1<0,x2>0,結(jié)論D錯(cuò)誤.故選A.點(diǎn)睛:本題考查了根的判別式以及根與系數(shù)的關(guān)系,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.3、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】810000=8.1×1.

故選B.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.4、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點(diǎn)睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應(yīng)用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關(guān)鍵.5、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點(diǎn):切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).6、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進(jìn)行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r(shí),則作AB的垂直平分線,交PQ,MN的有兩點(diǎn),即有兩個(gè)三角形.當(dāng)讓AB當(dāng)腰時(shí),則以點(diǎn)A為圓心,AB為半徑畫圓交PQ,MN有三點(diǎn),所以有三個(gè).當(dāng)以點(diǎn)B為圓心,AB為半徑畫圓,交PQ,MN有三點(diǎn),所以有三個(gè).所以共8個(gè).故選D.點(diǎn)評(píng):本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.7、A【解析】

本題考查反比例函數(shù)的圖象和性質(zhì),由k-8>0即可解得答案.【詳解】∵反比例函數(shù)y=的圖象位于第一、第三象限,∴k-8>0,解得k>8,故選A.【點(diǎn)睛】本題考查了反比例函數(shù)的圖象和性質(zhì):①、當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②、當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減??;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.8、C【解析】試題分析:由得,,即是判斷函數(shù)與函數(shù)的圖象的交點(diǎn)情況.因?yàn)楹瘮?shù)與函數(shù)的圖象只有一個(gè)交點(diǎn)所以方程只有一個(gè)實(shí)數(shù)根故選C.考點(diǎn):函數(shù)的圖象點(diǎn)評(píng):函數(shù)的圖象問(wèn)題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見(jiàn)題,在壓軸題中比較常見(jiàn),要特別注意.9、B【解析】

根據(jù)題目中的數(shù)據(jù)可以用科學(xué)記數(shù)法表示出來(lái),本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法-表示較大的數(shù),解答本題的關(guān)鍵是明確科學(xué)記數(shù)法的表示方法.10、B【解析】

連接BD,利用直徑得出∠ABD=65°,進(jìn)而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點(diǎn)睛】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.二、填空題(共7小題,每小題3分,滿分21分)11、1<m≤2【解析】

首先根據(jù)不等式恰好有個(gè)整數(shù)解求出不等式組的解集為,再確定.【詳解】不等式組有個(gè)整數(shù)解,其整數(shù)解有、這個(gè),.故答案為:.【點(diǎn)睛】此題主要考查了解不等式組,關(guān)鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.12、-1【解析】

利用題中的新定義計(jì)算即可求出值.【詳解】解:根據(jù)題中的新定義得:原式=*(﹣1)=3*(﹣1)==﹣1.故答案為﹣1.【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.13、36°或37°.【解析】分析:先過(guò)E作EG∥AB,根據(jù)平行線的性質(zhì)可得∠AEF=∠BAE+∠DFE,再設(shè)∠CEF=x,則∠AEC=2x,根據(jù)6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進(jìn)而得到∠C的度數(shù).詳解:如圖,過(guò)E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設(shè)∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點(diǎn)睛:本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運(yùn)用,解決問(wèn)題的關(guān)鍵是作平行線,解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.14、【解析】

利用勾股定理求出斜邊長(zhǎng),再利用面積法求出斜邊上的高即可.【詳解】解:∵直角三角形的兩條直角邊的長(zhǎng)分別為5,12,∴斜邊為=13,∵三角形的面積=×5×12=×13h(h為斜邊上的高),∴h=.故答案為:.【點(diǎn)睛】考查了勾股定理,以及三角形面積公式,熟練掌握勾股定理是解本題的關(guān)鍵.15、1【解析】

如圖作點(diǎn)D關(guān)于BC的對(duì)稱點(diǎn)D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點(diǎn)D關(guān)于BC的對(duì)稱點(diǎn)D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點(diǎn)睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱,根據(jù)兩點(diǎn)之間線段最短解決最短問(wèn)題.16、【解析】

先求出每個(gè)不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【點(diǎn)睛】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.17、【解析】

如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.三、解答題(共7小題,滿分69分)18、(1)CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.【解析】

(1)如圖1中,作AH⊥BC于H.首先證明四邊形AHCD是正方形,求出BC、MC的長(zhǎng),利用平行線分線段成比例定理即可解決問(wèn)題;(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM?EB,由此構(gòu)建函數(shù)關(guān)系式即可解決問(wèn)題;(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.想辦法證明CM=CN,MN=DN+HM即可解決問(wèn)題;【詳解】解:(1)如圖1中,作AH⊥BC于H.∵CD⊥BC,AD∥BC,∴∠BCD=∠D=∠AHC=90°,∴四邊形AHCD是矩形,∵AD=DC=1,∴四邊形AHCD是正方形,∴AH=CH=CD=1,∵∠B=45°,∴AH=BH=1,BC=2,∵CM=BC=,CM∥AD,∴=,∴=,∴CF=1.(2)如圖1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,∵∠AEM=∠AEB,∠EAM=∠B,∴△EAM∽△EBA,∴=,∴AE2=EM?EB,∴1+(1+y)2=(x+y)(y+2),∴y=,∵2﹣2x≥0,∴0≤x≤1.(3)如圖2中,作AH⊥BC于H,連接MN,在HB上取一點(diǎn)G,使得HG=DN,連接AG.則△ADN≌△AHG,△MAN≌△MAG,∴MN=MG=HM+GH=HM+DN,∵△ABM∽△EFN,∴∠EFN=∠B=45°,∴CF=CE,∵四邊形AHCD是正方形,∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,∴△AHE≌△ADF,∴∠AEH=∠AFD,∵∠AEH=∠DAN,∠AFD=∠HAM,∴∠HAM=∠DAN,∴△ADN≌△AHM,∴DN=HM,設(shè)DN=HM=x,則MN=2x,CN=CM=x,∴x+x=1,∴x=﹣1,∴CM=2﹣.【點(diǎn)睛】本題考查了正方形的判定與性質(zhì),平行線分線段成比例定理,勾股定理,相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì).熟練運(yùn)用平行線分線段成比例定理是解(1)的關(guān)鍵;證明△EAM∽△EBA是解(2)的關(guān)鍵;綜合運(yùn)用全等三角形的判定與性質(zhì)是解(3)的關(guān)鍵.19、15cm【解析】試題分析:設(shè)細(xì)線OB的長(zhǎng)度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數(shù)得出方程,解方程即可.試題解析:設(shè)細(xì)線OB的長(zhǎng)度為xcm,作AD⊥OB于D,如圖所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四邊形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.20、【解析】分析:此題應(yīng)先將原分式方程兩邊同時(shí)乘以最簡(jiǎn)公分母,則原分式方程可化為整式方程,解出即可.詳解:去分母,得.去括號(hào),得.移項(xiàng),得.合并同類項(xiàng),得.系數(shù)化為1,得.經(jīng)檢驗(yàn),原方程的解為.點(diǎn)睛:本題主要考查分式方程的解法.注意:解分式方程必須檢驗(yàn).21、見(jiàn)解析.【解析】

分別作線段CD的垂直平分線和∠AOB的角平分線,它們的交點(diǎn)即為點(diǎn)P.【詳解】如圖,點(diǎn)P為所作.【點(diǎn)睛】本題考查了作圖?應(yīng)用與設(shè)計(jì)作圖,熟知角平分線的性質(zhì)與線段垂直平分線的性質(zhì)是解答此題的關(guān)鍵.22、見(jiàn)解析【解析】

根據(jù)內(nèi)接正四邊形的作圖方法畫出圖,保留作圖痕跡即可.【詳解】任作一條直徑,再作該直徑的中垂線,順次連接圓上的四點(diǎn)即可.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)圓內(nèi)接正四邊形作圖的應(yīng)用,掌握?qǐng)A內(nèi)接正四邊形的作圖方法是解題的關(guān)鍵.23、(1)見(jiàn)解析;(2)B點(diǎn)經(jīng)過(guò)的路徑長(zhǎng)為π.【解析】

(1)、連接AH,根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出AB=AE,∠ABH=∠AEH=90°,根據(jù)AH為公共邊得出Rt△ABH和Rt△AEH全等,從而得出答案;(2)、根據(jù)題意得出∠EAB的度數(shù),然后根據(jù)弧長(zhǎng)的計(jì)算公式得出答案.【詳解】(1)、證明:如圖1中,連接AH,由旋轉(zhuǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論