版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省合肥市、安慶市名校大聯(lián)考2023-2024學年中考數(shù)學模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(2017﹣π)0﹣(﹣)﹣1+tan30°的結(jié)果是()A.5 B.﹣2 C.2 D.﹣12.若圓錐的軸截面為等邊三角形,則稱此圓錐為正圓錐,則正圓錐側(cè)面展開圖的圓心角是()A.90°B.120°C.150°D.180°3.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個4.如圖,△ABC中,AB=5,BC=3,AC=4,以點C為圓心的圓與AB相切,則⊙C的半徑為()A.2.3 B.2.4 C.2.5 D.2.65.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.6.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a7.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm8.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.9.如圖,在平面直角坐標系中,點A在第一象限,點P在x軸上,若以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有()A.2個 B.3個 C.4個 D.5個10.如果關(guān)于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥4二、填空題(共7小題,每小題3分,滿分21分)11.化簡:12+31312.某航空公司規(guī)定,旅客乘機所攜帶行李的質(zhì)量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費行李的最大質(zhì)量為kg13.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.14.若兩個關(guān)于x,y的二元一次方程組與有相同的解,則mn的值為_____.15.如圖,在平面直角坐標系中,四邊形OABC是邊長為2的正方形,頂點A、C分別在x軸、y軸的正半軸上,點Q在對角線OB上,若OQ=OC,則點Q的坐標為_______.16.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.17.如圖,AB是⊙O的直徑,CD是弦,CD⊥AB于點E,若⊙O的半徑是5,CD=8,則AE=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,兩座建筑物的水平距離BC為40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點后一位).參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.19.(5分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.20.(8分)計算:(﹣2)2+20180﹣21.(10分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.22.(10分)如圖,⊙O的直徑AD長為6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度數(shù);(2)求證:BC是⊙O的切線.23.(12分)計算:.24.(14分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(n,0)(1)點C坐標為;(2)求出小球飛行中最高點N的坐標(用含有n的代數(shù)式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:原式=1-(-3)+=1+3+1=5,故選A.2、D【解析】試題分析:設(shè)正圓錐的底面半徑是r,則母線長是2r,底面周長是2πr,設(shè)正圓錐的側(cè)面展開圖的圓心角是n°,則2r·πr180考點:圓錐的計算.3、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.4、B【解析】試題分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如圖:設(shè)切點為D,連接CD,∵AB是⊙C的切線,∴CD⊥AB,∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,∴⊙C的半徑為,故選B.考點:圓的切線的性質(zhì);勾股定理.5、C【解析】
主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關(guān)鍵是熟練的掌握截一個幾何體.6、B【解析】
先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.7、A【解析】分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8﹣x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.詳解:設(shè)CN=xcm,則DN=(8﹣x)cm,由折疊的性質(zhì)知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題.8、B【解析】試題解析:如圖所示:設(shè)BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【點睛】本題考查了解直角三角形、含30°角的直角三角形的性質(zhì)、等腰三角形的性質(zhì)、三角函數(shù)等,通過作輔助線求出AM是解決問題的關(guān)鍵.9、C【解析】
分為三種情況:①AP=OP,②AP=OA,③OA=OP,分別畫出即可.【詳解】如圖,分OP=AP(1點),OA=AP(1點),OA=OP(2點)三種情況討論.∴以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有4個.故選C.【點睛】本題考查了等腰三角形的判定和坐標與圖形的性質(zhì),主要考查學生的動手操作能力和理解能力,注意不要漏解.10、D【解析】
由被開方數(shù)非負結(jié)合根的判別式△≥0,即可得出關(guān)于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關(guān)于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】試題分析:先進行二次根式的化簡,然后合并,可得原式=23+3=33.12、20【解析】設(shè)函數(shù)表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質(zhì)量為20kg13、5【解析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.14、1【解析】
聯(lián)立不含m、n的方程求出x與y的值,代入求出m、n的值,即可求出所求式子的值.【詳解】聯(lián)立得:,①×2+②,得:10x=20,解得:x=2,將x=2代入①,得:1-y=1,解得:y=0,則,將x=2、y=0代入,得:,解得:,則mn=1,故答案為1.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程都成立的未知數(shù)的值.15、(2,2)【解析】如圖,過點Q作QD⊥OA于點D,∴∠QDO=90°.∵四邊形OABC是正方形,且邊長為2,OQ=OC,∴∠QOA=45°,OQ=OC=2,∴△ODQ是等腰直角三角形,∴OD=OQ=22=2∴點Q的坐標為(216、【解析】
設(shè)AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【詳解】設(shè)AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關(guān)系有,解得,故當時,取得最大值,
故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.17、2【解析】
連接OC,由垂徑定理知,點E是CD的中點,在直角△OCE中,利用勾股定理即可得到關(guān)于半徑的方程,求得圓半徑即可【詳解】設(shè)AE為x,連接OC,∵AB是⊙O的直徑,弦CD⊥AB于點E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,則AE是2,故答案為:2【點睛】此題考查垂徑定理和勾股定理,,解題的關(guān)鍵是利用勾股定理求關(guān)于半徑的方程.三、解答題(共7小題,滿分69分)18、建筑物AB的高度約為30.3m.【解析】分析:過點D作DE⊥AB,利用解直角三角形的計算解答即可.詳解:如圖,根據(jù)題意,BC=2,∠DCB=90°,∠ABC=90°.過點D作DE⊥AB,垂足為E,則∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四邊形DCBE為矩形,∴DE=BC=2.在Rt△ADE中,tan∠ADE=,∴AE=DE?tan30°=.在Rt△DEB中,tan∠BDE=,∴BE=DE?tan10°=2×0.18=7.2,∴AB=AE+BE=23.09+7.2=30.29≈30.3.答:建筑物AB的高度約為30.3m.點睛:考查解直角三角形的應(yīng)用﹣仰角俯角問題,要求學生能借助俯角構(gòu)造直角三角形并解直角三角形.19、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關(guān)鍵.20、﹣1【解析】分析:首先計算乘方、零次冪和開平方,然后再計算加減即可.詳解:原式=4+1-6=-1.點睛:此題主要考查了實數(shù)的運算,關(guān)鍵是掌握乘方的意義、零次冪計算公式和二次根式的性質(zhì).21、證明見解析.【解析】試題分析:首先根據(jù)等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據(jù)等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質(zhì)與判定,平行線的性質(zhì)22、(1)60°;(2)見解析【解析】
(1)連接BD,由AD為圓的直徑,得到∠ABD為直角,再利用30度角所對的直角邊等于斜邊的一半求出BD的長,根據(jù)CD與AB平行,得到一對內(nèi)錯角相等,確定出∠CDB為直角,在直角三角形BCD中,利用銳角三角函數(shù)定義求出tanC的值,即可確定出∠C的度數(shù);(2)連接OB,由OA=OB,利用等邊對等角得到一對角相等,再由CD與AB平行,得到一對同旁內(nèi)角互補,求出∠ABC度數(shù),由∠ABC﹣∠ABO度數(shù)確定出∠OBC度數(shù)為90,即可得證;【詳解】(1)如圖,連接BD,∵AD為圓O的直徑,∴∠ABD=90°,∴BD=AD=3,∵CD∥AB,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt△CDB中,tanC=,∴∠C=60°;(2)連接OB,∵∠A=30°,OA=OB,∴∠OBA=∠A=30°,∵CD∥AB,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程施工合同成本結(jié)轉(zhuǎn)分錄
- 《薄壁不銹鋼管》課件
- 2025年鄂爾多斯貨運從業(yè)資格證考試題
- 2025年邵陽貨運從業(yè)資格證考試試題
- 2025年銅陵貨運上崗證考試多少道題
- 2025年連云港道路運輸從業(yè)資格證考試
- 《EYEQ項目說明完整》課件
- 第四單元 維護國家利益
- 建筑工程維修合同
- 紡織機械操作指南
- 全國各地光伏電站最佳安裝傾角、峰值日照時數(shù)、首年發(fā)電量等速查表
- 高毒力肺炎克雷伯菌感染
- 《條形統(tǒng)計圖(以一當一)》教學建議
- 實驗室安全檢查記錄表(實驗場所)
- 國開作業(yè)《公共關(guān)系學》實訓項目3:社區(qū)關(guān)系建設(shè)(六選一)-實訓項目二社區(qū)關(guān)系建設(shè)方案-參考(含答案)98
- 1.焊工資格備案表
- 招聘求職簡歷制作表格模板可編輯下載 精品簡歷模板 簡歷封面 17
- 人教統(tǒng)編版高中語文必修下冊第六單元(單元總結(jié))
- DB13∕T 5542-2022 水利水電工程施工組織設(shè)計編制指南
- 【股票指標公式下載】-【通達信】六脈神劍(底部來臨止跌牛勢股票)
- 拔牙-ppt課件
評論
0/150
提交評論