2025屆江蘇省無錫新區(qū)六校聯(lián)考九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第1頁
2025屆江蘇省無錫新區(qū)六校聯(lián)考九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第2頁
2025屆江蘇省無錫新區(qū)六校聯(lián)考九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第3頁
2025屆江蘇省無錫新區(qū)六校聯(lián)考九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第4頁
2025屆江蘇省無錫新區(qū)六校聯(lián)考九年級數(shù)學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省無錫新區(qū)六校聯(lián)考九年級數(shù)學第一學期期末達標檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.點關于軸對稱的點的坐標是()A. B. C. D.2.二次函數(shù)y=﹣x2+2mx(m為常數(shù)),當0≤x≤1時,函數(shù)值y的最大值為4,則m的值是()A.±2 B.2 C.±2.5 D.2.53.如果,那么銳角A的度數(shù)是()A.60° B.45° C.30° D.20°4.如圖,是的直徑,點在上,,則的度數(shù)為()A. B. C. D.5.如圖,正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點.AB⊥x軸于B,CD⊥x軸于D,當四邊形ABCD的面積為6時,則k的值是()A.6 B.3 C.2 D.6.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.7.下列圖形中,可以看作是中心對稱圖形的為()A. B. C. D.8.下列標志中既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.9.如圖,將沿著弦翻折,劣弧恰好經(jīng)過圓心.如果半徑為4,那么的弦長度為A. B. C. D.10.用一圓心角為120°,半徑為6cm的扇形做成一個圓錐的側面,這個圓錐的底面的半徑是()A.1cm B.2cm C.3cm D.4cm二、填空題(每小題3分,共24分)11.已知⊙O的周長等于6πcm,則它的內接正六邊形面積為_____cm212.為了加強視力保護意識,小明要在書房里掛一張視力表.由于書房空間狹小,他想根據(jù)測試距離為的大視力表制作一個測試距離為的小視力表.如圖,如果大視力表中“”的高度是,那么小視力表中相應“”的高度是__________.13.如果記,表示當時的值,即;表示當時的值,即;表示當時,的值,即;那么______________.14.如圖,△ABC的頂點A、B、C都在邊長為1的正方形網(wǎng)格的格點上,則sinA的值為________.15.計算:2sin30°+tan45°=_____.16.如圖,⊙O與直線相離,圓心到直線的距離,,將直線繞點逆時針旋轉后得到的直線剛好與⊙O相切于點,則⊙O的半徑=.17.如圖,在△ABC中,E,F(xiàn)分別為AB,AC的中點,則△AEF與△ABC的面積之比為.18.廣場上噴水池中的噴頭微露水面,噴出的水線呈一條拋物線,水線上水珠的高度(米)關于水珠與噴頭的水平距離(米)的函數(shù)解析式是.水珠可以達到的最大高度是________(米).三、解答題(共66分)19.(10分)如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點,與y軸交于點C,其中點A(-1,0).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發(fā),以每秒個單位長度的速度向點D運動,過點P作直線PQ∥y軸,與拋物線交于點Q,設運動時間為t(s).(1)直接寫出b,c的值及點D的坐標;(2)點E是拋物線上一動點,且位于第四象限,當△CBE的面積為6時,求出點E的坐標;(3)在線段PQ最長的條件下,點M在直線PQ上運動,點N在x軸上運動,當以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標.20.(6分)解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.21.(6分)(1)如圖1,在⊙O中,弦AB與CD相交于點F,∠BCD=68°,∠CFA=108°,求∠ADC的度數(shù).(2)如圖2,在正方形ABCD中,點E是CD上一點(DE>CE),連接AE,并過點E作AE的垂線交BC于點F,若AB=9,BF=7,求DE長.22.(8分)如圖,在ABC中,AC=BC,∠ACB=120°,點D是AB邊上一點,連接CD,以CD為邊作等邊CDE.(1)如圖1,若∠CDB=45°,AB=6,求等邊CDE的邊長;(2)如圖2,點D在AB邊上移動過程中,連接BE,取BE的中點F,連接CF,DF,過點D作DG⊥AC于點G.①求證:CF⊥DF;②如圖3,將CFD沿CF翻折得CF,連接B,直接寫出的最小值.23.(8分)用適當?shù)姆椒ń夥匠蹋海?)(2).24.(8分)已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB,DC、DC(或它們的延長線)于點M,N.(1)當∠MAN繞點A旋轉到(如圖1)時,求證:BM+DN=MN;(2)當∠MAN繞點A旋轉到如圖2的位置時,猜想線段BM,DN和MN之間又有怎樣的數(shù)量關系呢?請直接寫出你的猜想。(不需要證明)25.(10分)如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且∠EDB=∠C.(1)求證:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的長.26.(10分)如圖,學校準備在教學樓后面搭建一個簡易矩形自行車車棚,一邊利用教學樓的后墻(可利用的墻長為19m),另外三邊利用學?,F(xiàn)有總長38m的鐵欄圍成.(1)若圍成的面積為180m2,試求出自行車車棚的長和寬;(2)能圍成面積為200m2的自行車車棚嗎?如果能,請你給出設計方,如果不能,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)特殊銳角的三角函數(shù)值,先確定點M的坐標,然后根據(jù)關于x軸對稱的點的坐標x值不變,y值互為相反數(shù)的特點進行選擇即可.【詳解】因為,所以,所以點所以關于x軸的對稱點為故選D.【點睛】本題考查的是特殊角三角函數(shù)值和關于x軸對稱的點的坐標特點,熟練掌握三角函數(shù)值是解題的關鍵.2、D【解析】分m≤0、m≥1和0≤m≤1三種情況,根據(jù)y的最大值為4,結合二次函數(shù)的性質求解可得.【詳解】y=﹣x2+2mx=﹣(x﹣m)2+m2(m為常數(shù)),①若m≤0,當x=0時,y=﹣(0﹣m)2+m2=4,m不存在,②若m≥1,當x=1時,y=﹣(1﹣m)2+m2=4,解得:m=2.5;③若0≤m≤1,當x=m時,y=m2=4,即:m2=4,解得:m=2或m=﹣2,∵0≤m≤1,∴m=﹣2或2都舍去,故選:D.【點睛】此題主要考查二次函數(shù)的圖像與性質,解題的關鍵是根據(jù)題意分三種情況討論.3、A【分析】根據(jù)特殊角的三角函數(shù)值即可求解.【詳解】解:∵,∴銳角A的度數(shù)是60°,故選:A.【點睛】本題考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關鍵.4、B【分析】連接AC,根據(jù)圓周角定理,分別求出∠ACB=90,∠ACD=20,即可求∠BCD的度數(shù).【詳解】連接AC,

∵AB為⊙O的直徑,

∴∠ACB=90°,

∵∠AED=20°,

∴∠ACD=∠AED=20°,

∴∠BCD=∠ACB+∠ACD=90°+20°=110°,

故選:B.【點睛】本題考查的是圓周角定理:①直徑所對的圓周角為直角;②在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、B【分析】根據(jù)反比例函數(shù)的對稱性可知:OB=OD,AB=CD,再由反比例函數(shù)y=中k的幾何意義,即可得到結論.【詳解】解:∵正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點,AB⊥x軸于B,CD⊥x軸于D,∴AB=OB=OD=CD,∴四邊形ABCD是平行四邊形,∴k=2S△AOB=2×=3,故選:B.【點睛】本題考查反比例函數(shù)與正比例函數(shù)的結合題型,關鍵在于熟悉反比例函數(shù)k值的幾何意義.6、A【分析】根據(jù)中心對稱圖形的定義和軸對稱的定義逐一判斷即可.【詳解】A選項是中心對稱圖形,也是軸對稱圖形,故A符合題意;B選項是中心對稱圖形,不是軸對稱圖形,故B不符合題意;C選項不是中心對稱圖形,是軸對稱圖形,故C不符合題意;D選項是中心對稱圖形,不是軸對稱圖形,故D不符合題意.故選:A.【點睛】此題考查的是中心對稱圖形的識別和軸對稱圖形的識別,掌握中心對稱圖形的定義和軸對稱圖形的定義是解決此題的關鍵.7、B【分析】根據(jù)中心對稱的定義,結合所給圖形即可作出判斷.【詳解】A、不是中心對稱圖形,故本選項錯誤;

B、是中心對稱圖形,故本選項正確;

C、不是中心對稱圖形,故本選項錯誤;

D、不是中心對稱圖形,故本選項錯誤;

故選:B.【點睛】此題考查中心對稱圖形的特點,解題關鍵在于判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.8、C【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形.故錯誤;

B、不是軸對稱圖形,也不是中心對稱圖形.故錯誤;

C、是軸對稱圖形,也是中心對稱圖形.故正確;

D、是軸對稱圖形,不是中心對稱圖形.故錯誤.

故選:C.【點睛】本題考查中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.9、D【分析】如果過O作OC⊥AB于D,交折疊前的AB弧于C,根據(jù)折疊后劣弧恰好經(jīng)過圓心O,根據(jù)垂徑定理及勾股定理即可求出AD的長,進而求出AB的長.【詳解】解:如圖,過O作OC⊥AB于D,交折疊前的AB弧于C,

根據(jù)折疊后劣弧恰好經(jīng)過圓心O,那么可得出的是OD=CD=2,

直角三角形OAD中,OA=4,OD=2,

∴AD=∴AB=2AD=,故選:D.【點睛】本題考查了垂徑定理和勾股定理的綜合運用,利用好條件:劣弧折疊后恰好經(jīng)過圓心O是解題的關鍵.10、B【解析】∵扇形的圓心角為120°,半徑為6cm,∴根據(jù)扇形的弧長公式,側面展開后所得扇形的弧長為∵圓錐的底面周長等于它的側面展開圖的弧長,∴根據(jù)圓的周長公式,得,解得r=2cm.故選B.考點:圓錐和扇形的計算.二、填空題(每小題3分,共24分)11、【分析】首先過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質,即可求得答案.【詳解】解:如圖,過點O作OH⊥AB于點H,連接OA,OB,∴AH=AB,∵⊙O的周長等于6πcm,∴⊙O的半徑為:3cm,∵∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∴AH=cm,∴OH==,∴S正六邊形ABCDEF=6S△OAB=6××3×=,故答案為:.【點睛】本題考查的是正多邊形和圓,熟知正六邊形的半徑與邊長相等是解答此題的關鍵.12、【分析】先利用平行線證明相似,再利用相似三角形的性質得到比例式,即可計算出結果.【詳解】解:如圖,

由題意得:CD∥AB,

∴,,∵AB=3.5cm,BE=5m,DE=3m,,∴CD=2.1cm,

故答案是:2.1cm.【點睛】本題考查了相似三角形的應用,比較簡單;根據(jù)生活常識,墻與地面垂直,則兩張視力表平行,根據(jù)平行得到相似列出比例式,可以計算出結果.13、【分析】觀察前幾個數(shù),,,,依此規(guī)律即可求解.【詳解】∵,,∴,∵,,∴,,∴,∵,∴2019個1.故答案為:.【點睛】此題考查了分式的加減運算法則.解答此類題目的關鍵是認真觀察題中式子的特點,找出其中的規(guī)律.14、【解析】如圖,由題意可知∠ADB=90°,BD=,AB=,∴sinA=.15、1.【分析】根據(jù)解特殊角的三角函數(shù)值即可解答.【詳解】原式=1×+1=1.【點睛】本題考查特殊角的三角函數(shù)值,解題的關鍵是牢記這些特殊三角函數(shù)值.16、1.【解析】試題分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,則∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直線剛好與⊙O相切于點C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考點:①解直角三角形;②切線的性質;③含30°角直角三角形的性質.17、3:3.【解析】試題解析:∵E、F分別為AB、AC的中點,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考點:3.相似三角形的判定與性質;3.三角形中位線定理..18、10【解析】將一般式轉化為頂點式,依據(jù)自變量的變化范圍求解即可.【詳解】解:,當x=2時,y有最大值10,故答案為:10.【點睛】利用配方法將一般式轉化為頂點式,再利用頂點式去求解函數(shù)的最大值.三、解答題(共66分)19、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)將點A分別代入y=-x2+bx+3,y=x+c中求出b、c的值,確定解析式,再解兩個函數(shù)關系式組成的方程組即可得到點D的坐標;(2))過點E作EF⊥y軸,設E(x,-x2+2x+3),先求出點B、C的坐標,再利用面積加減關系表示出△CBE的面積,即可求出點E的坐標.(3)分別以點D、M、N為直角頂點討論△MND是等腰直角三角形時點N的坐標.【詳解】(1)將A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,將點A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)過點E作EF⊥y軸,設E(x,-x2+2x+3),當y=-x2+2x+3中y=0時,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直線AD的解析式為y=x+1,設P(m,m+1),則Q(m,-m2+2m+3),∴線段PQ的長度h=-m2+2m+3-(m+1)=,∴當=0.5,線段PQ有最大值.當∠D是直角時,不存在△MND是等腰直角三角形的情形;當∠M是直角時,如圖1,點M在線段DN的垂直平分線上,此時N1(2,0);當∠M是直角時,如圖2,作DE⊥x軸,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);當∠N是直角時,如圖3,作DE⊥x軸,∴∠N3HM3=∠DEN3=90,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);當∠N是直角時,如圖4,作DE⊥x軸,∴∠N4HM4=∠DEN4=90,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);綜上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式;根據(jù)函數(shù)性質得到點坐標,由此求出圖象中圖形的面積;還考查了圖象中構成的等腰直角三角形的情況,此時依據(jù)等腰直角三角形的性質,求出點N的坐標.20、(1)x1=2,x2;(2)x1=1或x2=2.【分析】(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)提取公因式x后,求出方程的解即可;【詳解】解:(1)2x2﹣7x+2=1,(x﹣2)(2x﹣1)=1,∴x﹣2=1或2x﹣1=1,∴x1=2,x2;(2)x2﹣2x=1,x(x﹣2)=1,x1=1或,x2=2.【點睛】本題主要考查了解一元二次方程,掌握解一元二次方程是解題的關鍵.21、(1)40°;(2)1.【分析】(1)由∠BCD=18°,∠CFA=108°,利用三角形外角的性質,即可求得∠B的度數(shù),然后由圓周角定理,求得答案;(2)由正方形的性質和已知條件證明△ADE∽△ECF,根據(jù)相似三角形的性質可知:,設DE=x,則EC=9﹣x,代入計算求出x的值即可.【詳解】(1)∵∠BCD=18°,∠CFA=108°,∴∠B=∠CFA﹣∠BCD=108°﹣18°=40°,∴∠ADC=∠B=40°.(2)解:∵四邊形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,設DE=x,則EC=9﹣x,∴,解得x1=3,x2=1,∵DE>CE,∴DE=1.【點睛】此題考查三角形的外角的性質,圓周角定理,正方形的性質,三角形相似的判定及性質.22、(1);(2)①證明見解析;②.【分析】(1)過點C作CH⊥AB于點H,由等腰三角形的性質和直角三角形的性質可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;(2)①延長BC到N,使CN=BC,由“SAS”可證CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位線定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可證DG=CF,DG∥CF,即可證四邊形CFDG是矩形,可得結論;②由“SAS”可證EFD≌BF,可得B=DE,則當CD取最小值時,有最小值,即可求解.【詳解】解:(1)如圖1,過點C作CH⊥AB于點H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,在RtBCH中,tan∠B=,∴tan30°=∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如圖2,延長BC到N,使CN=BC,∵AC=BC,∠ACB=120°,∴∠A=∠ABC=30°,∠NCA=60°,∵ECD是等邊三角形,∴EC=CD,∠ECD=60°,∴∠NCA=∠ECD,∴∠NCE=∠DCA,又∵CE=CD,AC=BC=CN,∴CEN≌CDA(SAS),∴EN=AD,∠N=∠A=30°,∵BC=CN,BF=EF,∴CF∥EN,CF=EN,∴∠BCF=∠N=30°,∴∠ACF=∠ACB﹣∠BCF=90°,又∵DG⊥AC,∴CF∥DG,∵∠A=30°,DG⊥AC,∴DG=AD,∴DG=CF,∴四邊形CFDG是平行四邊形,又∵∠ACF=90°,∴四邊形CFDG是矩形,∴∠CFD=90°∴CF⊥DF;②如圖3,連接B,∵將CFD沿CF翻折得CF,∴CD=C,DF=F,∠CFD=∠CF=90°,又∵EF=BF,∠EFD=∠BF,∴EFD≌BF(SAS),∴B=DE,∴B=CD,∵當B取最小值時,有最小值,∴當CD取最小值時,有最小值,∵當CD⊥AB時,CD有最小值,∴AD=CD,AB=2AD=2CD,∴最小值=.【點睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質,矩形的判定和性質,等腰三角形的性質等知識,添加恰當輔助線構造全等三角形是本題的關鍵.23、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【詳解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【點睛】本題考查了一元二次方程的解法,根據(jù)方程的特點選擇適當?shù)姆椒ㄊ墙鉀Q此題的關鍵.24、(1)見解析;(2)DN-BM=MN【分析】(1)根據(jù)題意延長CB至E使得BE=DN,連接AE,利用全等三角形判定證明△ABE≌△AND和△EAM≌△NAM,等量代換即可求證BM+DN=MN;(2)由題意在DN上截取DE=MB,連接AE,證△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根據(jù)SAS證△AMN≌△AEN,推出MN=EN即可.【詳解】解:(1)證明:如圖1,延長CB至E使得BE=DN,連接AE,∵四邊形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°=∠ABE,在△ADN和△ABE中∵AD=AB∠D=∠ABEDN=BE,△ABE≌△ADN(SAS),∴∠BAE=∠DAN,AE=AN,∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,∵∠MAN=45°,∴∠EAM=∠MAN,∵在△EAM和△

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論