版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
海南省儋州市洋浦中學(xué)2023-2024學(xué)年中考二模數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.“五一”期間,某市共接待海內(nèi)外游客約567000人次,將567000用科學(xué)記數(shù)法表示為()A.567×103B.56.7×104C.5.67×105D.0.567×1062.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個(gè)相等的實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根C.有一個(gè)實(shí)數(shù)根 D.無(wú)實(shí)數(shù)根3.如圖,直線(xiàn)a∥b,∠ABC的頂點(diǎn)B在直線(xiàn)a上,兩邊分別交b于A,C兩點(diǎn),若∠ABC=90°,∠1=40°,則∠2的度數(shù)為()A.30° B.40° C.50° D.60°4.將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)為的中點(diǎn),交于點(diǎn),經(jīng)過(guò)點(diǎn),將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)(),交于點(diǎn),交于點(diǎn),則的值為()A. B. C. D.5.關(guān)于的不等式的解集如圖所示,則的取值是A.0 B. C. D.6.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.7.如圖,已知,,則的度數(shù)為()A. B. C. D.8.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線(xiàn)交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)9.如圖是由5個(gè)相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.10.如圖,在⊙O中,點(diǎn)P是弦AB的中點(diǎn),CD是過(guò)點(diǎn)P的直徑,則下列結(jié)論:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正確的個(gè)數(shù)是()A.4 B.1 C.2 D.311.-的立方根是()A.-8 B.-4 C.-2 D.不存在12.如圖,已知△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,則cosA的值為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.PA、PB分別切⊙O于點(diǎn)A、B,∠PAB=60°,點(diǎn)C在⊙O上,則∠ACB的度數(shù)為_(kāi)____.14.在直角坐標(biāo)平面內(nèi)有一點(diǎn)A(3,4),點(diǎn)A與原點(diǎn)O的連線(xiàn)與x軸的正半軸夾角為α,那么角α的余弦值是_____.15.不等式組有2個(gè)整數(shù)解,則m的取值范圍是_____.16.分解因:=______________________.17.甲、乙兩車(chē)分別從A、B兩地同時(shí)出發(fā),相向行駛,已知甲車(chē)的速度大于乙車(chē)的速度,甲車(chē)到達(dá)B地后馬上以另一速度原路返回A地(掉頭的時(shí)間忽略不計(jì)),乙車(chē)到達(dá)A地以后即停在地等待甲車(chē).如圖所示為甲乙兩車(chē)間的距離y(千米)與甲車(chē)的行駛時(shí)間t(小時(shí))之間的函數(shù)圖象,則當(dāng)乙車(chē)到達(dá)A地的時(shí)候,甲車(chē)與A地的距離為_(kāi)____千米.18.有一枚質(zhì)地均勻的骰子,六個(gè)面分別表有1到6的點(diǎn)數(shù),任意將它拋擲兩次,并將兩次朝上面的點(diǎn)數(shù)相加,則其和小于6的概率是______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)已知:如圖,拋物線(xiàn)y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線(xiàn)段AB上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).(1)求拋物線(xiàn)的解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?(3)過(guò)點(diǎn)P作x軸的垂線(xiàn),交線(xiàn)段AB于點(diǎn)D,再過(guò)點(diǎn)P做PE∥x軸交拋物線(xiàn)于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.20.(6分)如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC,垂足為E.(1)證明:DE為⊙O的切線(xiàn);(2)連接DC,若BC=4,求弧DC與弦DC所圍成的圖形的面積.21.(6分)定義:在三角形中,把一邊的中點(diǎn)到這條邊的高線(xiàn)的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點(diǎn),AE⊥BC于E,則線(xiàn)段DE的長(zhǎng)叫做邊BC的中垂距.(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學(xué)依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線(xiàn),求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點(diǎn)E為邊CD的中點(diǎn),連結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,連結(jié)AC.求△ACF中邊AF的中垂距.22.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線(xiàn)AC為⊙O的直徑,過(guò)點(diǎn)C作AC的垂線(xiàn)交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB,DC,DF.求∠CDE的度數(shù);求證:DF是⊙O的切線(xiàn);若AC=DE,求tan∠ABD的值.23.(8分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹(shù)狀圖或列表)24.(10分)先化簡(jiǎn),再求值:,其中x=.25.(10分)“千年古都,大美西安”.某校數(shù)學(xué)興趣小組就“最想去的西安旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個(gè)最想去的景點(diǎn),(景點(diǎn)對(duì)應(yīng)的名稱(chēng)分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動(dòng)物園E:曲江海洋館).下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請(qǐng)估計(jì)“最想去景點(diǎn)B”的學(xué)生人數(shù).26.(12分)某高科技產(chǎn)品開(kāi)發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:?jiǎn)T工管理人員普通工作人員人員結(jié)構(gòu)總經(jīng)理部門(mén)經(jīng)理科研人員銷(xiāo)售人員高級(jí)技工中級(jí)技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請(qǐng)你根據(jù)上述內(nèi)容,解答下列問(wèn)題:該公司“高級(jí)技工”有名;所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;小張到這家公司應(yīng)聘普通工作人員.請(qǐng)你回答右圖中小張的問(wèn)題,并指出用(2)中的哪個(gè)數(shù)據(jù)向小張介紹員工的月工資實(shí)際水平更合理些;去掉四個(gè)管理人員的工資后,請(qǐng)你計(jì)算出其他員工的月平均工資(結(jié)果保留整數(shù)),并判斷能否反映該公司員工的月工資實(shí)際水平.27.(12分)如圖,直線(xiàn)y=﹣x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線(xiàn)y=﹣x2+bx+c經(jīng)過(guò)A,B兩點(diǎn),與x軸的另外一個(gè)交點(diǎn)為C填空:b=,c=,點(diǎn)C的坐標(biāo)為.如圖1,若點(diǎn)P是第一象限拋物線(xiàn)上的點(diǎn),連接OP交直線(xiàn)AB于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m.PQ與OQ的比值為y,求y與m的數(shù)學(xué)關(guān)系式,并求出PQ與OQ的比值的最大值.如圖2,若點(diǎn)P是第四象限的拋物線(xiàn)上的一點(diǎn).連接PB與AP,當(dāng)∠PBA+∠CBO=45°時(shí).求△PBA的面積.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值≥1時(shí),n是非負(fù)數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】567000=5.67×105,【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.2、B【解析】一元二次方程的根的情況與根的判別式有關(guān),,方程有兩個(gè)不相等的實(shí)數(shù)根,故選B3、C【解析】
依據(jù)平行線(xiàn)的性質(zhì),可得∠BAC的度數(shù),再根據(jù)三角形內(nèi)和定理,即可得到∠2的度數(shù).【詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【點(diǎn)睛】本題考查的是平行線(xiàn)的性質(zhì),用到的知識(shí)點(diǎn)為:兩直線(xiàn)平行,內(nèi)錯(cuò)角相等.4、C【解析】
先根據(jù)直角三角形斜邊上的中線(xiàn)性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點(diǎn)D為斜邊AB的中點(diǎn),∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).5、D【解析】
首先根據(jù)不等式的性質(zhì),解出x≤,由數(shù)軸可知,x≤-1,所以=-1,解出即可;【詳解】解:不等式,解得x<,由數(shù)軸可知,所以,解得;故選:.【點(diǎn)睛】本題主要考查了不等式的解法和在數(shù)軸上表示不等式的解集,在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.6、A【解析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.7、B【解析】分析:根據(jù)∠AOC和∠BOC的度數(shù)得出∠AOB的度數(shù),從而得出答案.詳解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故選B.點(diǎn)睛:本題主要考查的是角度的計(jì)算問(wèn)題,屬于基礎(chǔ)題型.理解各角之間的關(guān)系是解題的關(guān)鍵.8、C【解析】
試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對(duì)頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯(cuò)誤;綜上所述,結(jié)論正確的是①②③④共4個(gè).故選C.【點(diǎn)睛】考點(diǎn):1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線(xiàn)的性質(zhì);4、等腰三角形的判定與性質(zhì)9、A【解析】
根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個(gè)小正方形,第二層左邊有1個(gè)小正方形.故選A.【點(diǎn)睛】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.10、D【解析】
根據(jù)垂徑定理,圓周角的性質(zhì)定理即可作出判斷.【詳解】∵P是弦AB的中點(diǎn),CD是過(guò)點(diǎn)P的直徑.∴AB⊥CD,弧AD=弧BD,故①正確,③正確;∠AOB=2∠AOD=4∠ACD,故②正確.P是OD上的任意一點(diǎn),因而④不一定正確.故正確的是:①②③.故選:D.【點(diǎn)睛】本題主要考查了垂徑定理,圓周角定理,正確理解定理是關(guān)鍵.平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對(duì)的兩段??;同圓或等圓中,圓周角等于它所對(duì)的弧上的圓心角的一半.11、C【解析】分析:首先求出的值,然后根據(jù)立方根的計(jì)算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.12、D【解析】
過(guò)B點(diǎn)作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、60°或120°.【解析】
連接OA、OB,根據(jù)切線(xiàn)的性質(zhì)得出∠OAP的度數(shù),∠OBP的度數(shù);再根據(jù)四邊形的內(nèi)角和是360°,求出∠AOB的度數(shù),有圓周角定理或圓內(nèi)接四邊形的性質(zhì),求出∠ACB的度數(shù)即可.【詳解】解:連接OA、OB.∵PA,PB分別切⊙O于點(diǎn)A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=60°,∴在四邊形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,∴即當(dāng)C在D處時(shí),∠ACB=60°.在四邊形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.于是∠ACB的度數(shù)為60°或120°,故答案為60°或120°.【點(diǎn)睛】本題考查的是切線(xiàn)的性質(zhì)定理,圓內(nèi)接四邊形的性質(zhì),是一道基礎(chǔ)題.14、【解析】
根據(jù)勾股定理求出OA的長(zhǎng)度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點(diǎn)A坐標(biāo)為(3,4),∴OA==5,∴cosα=,故答案為【點(diǎn)睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對(duì)邊比斜邊;余弦等于鄰邊比斜邊;正切等于對(duì)邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.15、1<m≤2【解析】
首先根據(jù)不等式恰好有個(gè)整數(shù)解求出不等式組的解集為,再確定.【詳解】不等式組有個(gè)整數(shù)解,其整數(shù)解有、這個(gè),.故答案為:.【點(diǎn)睛】此題主要考查了解不等式組,關(guān)鍵是正確理解解集的規(guī)律:同大取大,同小取小,大小小大中間找,大大小小找不到.16、(x-2y)(x-2y+1)【解析】
根據(jù)所給代數(shù)式第一、二、五項(xiàng)一組,第三、四項(xiàng)一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)17、630【解析】分析:兩車(chē)相向而行5小時(shí)共行駛了900千米可得兩車(chē)的速度之和為180千米/時(shí),當(dāng)相遇后車(chē)共行駛了720千米時(shí),甲車(chē)到達(dá)B地,由此則可求得兩車(chē)的速度.再根據(jù)甲車(chē)返回到A地總用時(shí)16.5小時(shí),求出甲車(chē)返回時(shí)的速度即可求解.詳解:設(shè)甲車(chē),乙車(chē)的速度分別為x千米/時(shí),y千米/時(shí),甲車(chē)與乙車(chē)相向而行5小時(shí)相遇,則5(x+y)=900,解得x+y=180,相遇后當(dāng)甲車(chē)到達(dá)B地時(shí)兩車(chē)相距720千米,所需時(shí)間為720÷180=4小時(shí),則甲車(chē)從A地到B需要9小時(shí),故甲車(chē)的速度為900÷9=100千米/時(shí),乙車(chē)的速度為180-100=80千米/時(shí),乙車(chē)行駛900-720=180千米所需時(shí)間為180÷80=2.25小時(shí),甲車(chē)從B地到A地的速度為900÷(16.5-5-4)=120千米/時(shí).所以甲車(chē)從B地向A地行駛了120×2.25=270千米,當(dāng)乙車(chē)到達(dá)A地時(shí),甲車(chē)離A地的距離為900-270=630千米.點(diǎn)睛:利用函數(shù)圖象解決實(shí)際問(wèn)題,其關(guān)鍵在于正確理解函數(shù)圖象橫,縱坐標(biāo)表示的意義,抓住交點(diǎn),起點(diǎn).終點(diǎn)等關(guān)鍵點(diǎn),理解問(wèn)題的發(fā)展過(guò)程,將實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,從而將這個(gè)數(shù)學(xué)問(wèn)題變化為解答實(shí)際問(wèn)題.18、【解析】
列舉出所有情況,看兩個(gè)骰子向上的一面的點(diǎn)數(shù)和小于6的情況占總情況的多少即可.【詳解】解:列表得:
兩個(gè)骰子向上的一面的點(diǎn)數(shù)和小于6的有10種,
則其和小于6的概率是,
故答案為:.【點(diǎn)睛】本題考查了列表法與樹(shù)狀圖法,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件樹(shù)狀圖法適用于兩步或兩步以上完成的事件解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn)用到的知識(shí)點(diǎn)為:概率所求情況數(shù)與總情況數(shù)之比.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)拋物線(xiàn)解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】
(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線(xiàn)AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6時(shí)x的值即可得出答案.【詳解】(1)∵拋物線(xiàn)過(guò)點(diǎn)B(6,0)、C(﹣2,0),∴設(shè)拋物線(xiàn)解析式為y=a(x﹣6)(x+2),將點(diǎn)A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以?huà)佄锞€(xiàn)解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過(guò)點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,設(shè)直線(xiàn)AB解析式為y=kx+b,將點(diǎn)A(0,6)、B(6,0)代入,得:,解得:,則直線(xiàn)AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時(shí),△PAB的面積有最大值;(3)△PDE為等腰直角三角形,
則PE=PD,
點(diǎn)P(m,-m2+2m+6),
函數(shù)的對(duì)稱(chēng)軸為:x=2,則點(diǎn)E的橫坐標(biāo)為:4-m,
則PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故點(diǎn)P的坐標(biāo)為:(4,6)或(5-,3-5).【點(diǎn)睛】本題考查了二次函數(shù)的綜合問(wèn)題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運(yùn)用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.20、(1)詳見(jiàn)解析;(2).【解析】
(1)連接OD,由平行線(xiàn)的判定定理可得OD∥AC,利用平行線(xiàn)的性質(zhì)得∠ODE=∠DEA=90°,可得DE為⊙O的切線(xiàn);
(2)連接CD,求弧DC與弦DC所圍成的圖形的面積利用扇形DOC面積-三角形DOC的面積計(jì)算即可.【詳解】解:(1)證明:連接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE為⊙O的切線(xiàn);(2)連接CD,∵∠A=30°,AC=BC,∴∠BCA=120°,∵BC為直徑,∴∠ADC=90°,∴CD⊥AB,∴∠BCD=60°,∵OD=OC,∴∠DOC=60°,∴△DOC是等邊三角形,∵BC=4,∴OC=DC=2,∴S△DOC=DC×=,∴弧DC與弦DC所圍成的圖形的面積=﹣=﹣.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是等腰三角形的性質(zhì)、切線(xiàn)的判定與性質(zhì)以及扇形面積的計(jì)算,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)、切線(xiàn)的判定與性質(zhì)以及扇形面積的計(jì)算.21、(1)等腰三角形;線(xiàn)段的垂直平分線(xiàn)上的點(diǎn)到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據(jù)線(xiàn)段的垂直平分線(xiàn)的性質(zhì)即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長(zhǎng),即可求出DE的長(zhǎng).(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長(zhǎng),然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線(xiàn)段的垂直平分線(xiàn)上的點(diǎn)到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線(xiàn),BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為22、(1)90°;(1)證明見(jiàn)解析;(3)1.【解析】
(1)根據(jù)圓周角定理即可得∠CDE的度數(shù);(1)連接DO,根據(jù)直角三角形的性質(zhì)和等腰三角形的性質(zhì)易證∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切線(xiàn);(3)根據(jù)已知條件易證△CDE∽△ADC,利用相似三角形的性質(zhì)結(jié)合勾股定理表示出AD,DC的長(zhǎng),再利用圓周角定理得出tan∠ABD的值即可.【詳解】解:(1)解:∵對(duì)角線(xiàn)AC為⊙O的直徑,∴∠ADC=90°,∴∠EDC=90°;(1)證明:連接DO,∵∠EDC=90°,F(xiàn)是EC的中點(diǎn),∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切線(xiàn);(3)解:如圖所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴,∴DC1=AD?DE∵AC=1DE,∴設(shè)DE=x,則AC=1x,則AC1﹣AD1=AD?DE,期(1x)1﹣AD1=AD?x,整理得:AD1+AD?x﹣10x1=0,解得:AD=4x或﹣4.5x(負(fù)數(shù)舍去),則DC=,故tan∠ABD=tan∠ACD=.23、(1)(2),圖形見(jiàn)解析.【解析】
(1)根據(jù)概率的定義即可求出;(2)先根據(jù)題意列出樹(shù)狀圖,再利用概率公式進(jìn)行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹(shù)狀圖如下∴P(選中的男女主持人均為甲班的)=【點(diǎn)睛】此題主要考查概率的計(jì)算,解題的關(guān)鍵是根據(jù)題意列出樹(shù)狀圖進(jìn)行求解.24、1+【解析】
先把小括號(hào)內(nèi)的通分,按照分式的減法和分式除法法則進(jìn)行化簡(jiǎn),再把字母的值代入運(yùn)算即可.【詳解】解:原式當(dāng)時(shí),原式=【點(diǎn)睛】考查分式的混合運(yùn)算,掌握運(yùn)算順序是解題的關(guān)鍵.25、(1)40;(2)想去D景點(diǎn)的人數(shù)是8,圓心角度數(shù)是72°;(3)280.【解析】
(1)用最想去A景點(diǎn)的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計(jì)算出最想去D景點(diǎn)的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖,然后用360°乘以最想去D景點(diǎn)的人數(shù)所占的百分比即可得到扇形統(tǒng)計(jì)圖中表示“醉美旅游景點(diǎn)D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去B景點(diǎn)的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點(diǎn)的人數(shù)為40-8-14-4-6=8(人),補(bǔ)全條形統(tǒng)計(jì)圖為:扇形統(tǒng)計(jì)圖中表示“醉美旅游景點(diǎn)D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=280,所以估計(jì)“醉美旅游景點(diǎn)B“的學(xué)生人數(shù)為280人.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖:條形統(tǒng)計(jì)圖是用線(xiàn)段長(zhǎng)度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫(huà)成長(zhǎng)短不同的矩形直條,然后按順序把這些直條排列起來(lái).從條形圖可以很容易看出數(shù)據(jù)的大小,便于比較.也考查了扇形統(tǒng)計(jì)圖和利用樣本估計(jì)總體.26、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來(lái)介紹更合理些.(4)能反映該公司員工的月工資實(shí)際水平.【解析】
(1)用總?cè)藬?shù)50減去其它部門(mén)的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位數(shù)的特征可知,平均數(shù)易受極端數(shù)據(jù)的影響,用眾數(shù)和中位數(shù)映該公司員工的月工資實(shí)際水平更合適些;(4)去掉極端數(shù)據(jù)后平均數(shù)可以反映該公司員工的月工資實(shí)際水平.【詳解】(1)該公司“高級(jí)技工”
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版圍欄生產(chǎn)廢水處理與排放標(biāo)準(zhǔn)合同3篇
- 二零二五版?zhèn)€人專(zhuān)利權(quán)抵押融資合同模板2篇
- 二零二五版股權(quán)質(zhì)押投資顧問(wèn)服務(wù)合同樣本3篇
- 二零二五年藝術(shù)展廳租賃及藝術(shù)品交易服務(wù)合同3篇
- 二零二五版國(guó)際貿(mào)易實(shí)務(wù)實(shí)驗(yàn)報(bào)告與國(guó)際貿(mào)易實(shí)務(wù)指導(dǎo)合同3篇
- 二零二五版電商企業(yè)內(nèi)部保密協(xié)議及商業(yè)秘密保密制度合同2篇
- 二零二五年度高校教師解聘合同3篇
- 二零二五版屋頂光伏發(fā)電與防水一體化系統(tǒng)合同3篇
- 二零二五版上市公司短期融資券發(fā)行合同3篇
- 二零二五版企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)管理體系構(gòu)建服務(wù)合同2篇
- DB-T29-74-2018天津市城市道路工程施工及驗(yàn)收標(biāo)準(zhǔn)
- 小學(xué)一年級(jí)20以?xún)?nèi)加減法混合運(yùn)算3000題(已排版)
- 智慧工廠(chǎng)數(shù)字孿生解決方案
- 病機(jī)-基本病機(jī) 邪正盛衰講解
- 品管圈知識(shí) 課件
- 非誠(chéng)不找小品臺(tái)詞
- 2024年3月江蘇省考公務(wù)員面試題(B類(lèi))及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護(hù)理風(fēng)險(xiǎn)防控PPT
- 充電樁采購(gòu)安裝投標(biāo)方案(技術(shù)方案)
- 醫(yī)院科室考勤表
評(píng)論
0/150
提交評(píng)論