高中數(shù)學(xué)老師教學(xué)案例反思_第1頁
高中數(shù)學(xué)老師教學(xué)案例反思_第2頁
高中數(shù)學(xué)老師教學(xué)案例反思_第3頁
高中數(shù)學(xué)老師教學(xué)案例反思_第4頁
高中數(shù)學(xué)老師教學(xué)案例反思_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高中數(shù)學(xué)老師教學(xué)案例反思

導(dǎo)讀:我根據(jù)大家的需要整理了一份關(guān)于《高中數(shù)學(xué)老師教學(xué)案例反思》

的內(nèi)容,具體內(nèi)容:數(shù)學(xué)是一門邏輯性很強(qiáng)的學(xué)科,相對(duì)于小學(xué)、初中數(shù)

學(xué)而言,高中數(shù)學(xué)明顯難了很多。下面是有,歡迎參閱。范文1本人任教

高中數(shù)學(xué)新課程已有三年,通過實(shí)踐,對(duì)高中新課程的教學(xué)理念有了...

數(shù)學(xué)是一門邏輯性很強(qiáng)的學(xué)科,相對(duì)于小學(xué)、初中數(shù)學(xué)而言,高中數(shù)學(xué)明

顯難了很多。下面是有,歡迎參閱。

范文1

本人任教高中數(shù)學(xué)新課程已有三年,通過實(shí)踐,對(duì)高中新課程的教學(xué)理

念有了進(jìn)一步的了解,對(duì)新課標(biāo)下的具體教學(xué)實(shí)施有了一些經(jīng)驗(yàn)或想法。

以下就是自己在新課改背景下,對(duì)一些教學(xué)內(nèi)容所做的思考與體會(huì)。

一、將數(shù)學(xué)教學(xué)內(nèi)容的學(xué)術(shù)形態(tài)轉(zhuǎn)化為學(xué)生易于接受的教育形態(tài)[案例

1]弧度制的教學(xué)

在弧度制的教學(xué)中,教材在介紹了弧度制的概念時(shí),直接給出弧度的

角”的定義,然而學(xué)生難以接受,常常不解地問:“怎么想到要把長(zhǎng)度等

于半徑的弧所對(duì)的圓心角叫做1弧度的角?〃如果老師照本宣科,學(xué)生便更

加感到乏味:"弧度,弧度,越學(xué)越糊涂?!āɑ《戎啤ㄟ@類學(xué)生在生活與社

會(huì)實(shí)踐中從未碰到過的概念,直接給出它的定義,學(xué)生會(huì)很難理解。在課

堂教學(xué)中,可采用如下設(shè)計(jì)的教學(xué)過程。

1、創(chuàng)設(shè)故事情境

一個(gè)生病的小男孩得知自己的體溫是〃102〃時(shí),十分憂傷地獨(dú)自一個(gè)人

躺在床上〃等死〃。而他的爸爸對(duì)此卻一無所知,他以為兒子是想休息,所

以才沒有陪伴他,等他從外面打獵回來,發(fā)現(xiàn)兒子不見好轉(zhuǎn)時(shí),才發(fā)現(xiàn)兒

子沒有吃藥。一問才知道,他兒子在學(xué)校里聽同學(xué)說一個(gè)人的體溫是〃44”

度時(shí)就不能活。當(dāng)爸爸告訴他就像英里和千米一樣,有兩種不同的體溫測(cè)

量標(biāo)準(zhǔn),一種37度是正常,而另一種98度是正常時(shí),他才一下子放松下

來,委屈的淚水嘩嘩地流下來。在生活、生產(chǎn)和科學(xué)研究中,一個(gè)量可

以有幾種不同的計(jì)量單位(老師可以讓學(xué)生說出如長(zhǎng)度、面積、質(zhì)量等一

些量的不同計(jì)量單位),并指出對(duì)于“角〃僅用〃度〃做單位就很不方便。因

此,我們要學(xué)習(xí)角的另一種計(jì)量單位一一弧度。如此引入很.自然引出或

鼓勵(lì)學(xué)生猜測(cè)〃角〃還有沒有其他度量方式,從而開啟思維的閘門。

2、探索角新的度量方法

可從兩種度量實(shí)質(zhì)上的一致之處開始探索:拿兩個(gè)量角器拼成一個(gè)圓,

可以看出圓周被分成360份,其中每一份所對(duì)的圓心角的度數(shù)就是1度,

然后提出問題〃拿“圓上不同的圓弧,度量圓周時(shí),得到的數(shù)值是否一樣?

為了探索這個(gè)問題,把學(xué)生分成若干小組,思考下列問題:

①1度的角是如何規(guī)定的?

②用一個(gè)圓心角所對(duì)的弧長(zhǎng)來度量一個(gè)圓心角的大小是否可行?同一

個(gè)圓心角在半徑不等的圓中所對(duì)弧長(zhǎng)相等嗎?

③用一個(gè)圓的半徑來度量該圓一個(gè)圓心角的大小是否可行?其值會(huì)不

會(huì)由于圓半徑的變化而變化?

④如何定義圓心角的大小?說明這種度量的好處。

要求學(xué)生分組討論以上問題,寫出結(jié)果,在班內(nèi)交流結(jié)果,師生共同確

定答案。

這樣處理可將弧度概念與度量有機(jī)結(jié)合起來,有效化解難點(diǎn),在探索中

又注重課堂交流能力的培養(yǎng),使學(xué)生在不斷的交流中逐漸明晰自己的思

路。

二、由重結(jié)果走向重過程

新的課程標(biāo)準(zhǔn)不僅強(qiáng)調(diào)基礎(chǔ)知識(shí)與基本技能的獲得,更強(qiáng)調(diào)讓學(xué)生經(jīng)歷

知識(shí)的形成過程,以及伴隨這一過程產(chǎn)生的積極的情感體驗(yàn)和正確的價(jià)

值觀。

[案例2]等比數(shù)列的前n項(xiàng)和公式的探求。

為了求得一般的等比數(shù)列的前n項(xiàng)和,先用一個(gè)簡(jiǎn)捷公式來表示。

已知等比數(shù)列{an}的公比為q,求這個(gè)數(shù)列的前n項(xiàng)和Sn。即

Sn=al+a2+a3+、、、+an。

(1)知識(shí)回顧。

類比學(xué)過的等差數(shù)列的前n項(xiàng)和公式,不難想到等比數(shù)列前n項(xiàng)和Sn

也希望能用al、an,n或q來表示。

請(qǐng)同學(xué)們回答:對(duì)于等比數(shù)列,我們已經(jīng)掌握了哪些知識(shí)?

①等比數(shù)的定義,用式子表示為:

②還可以用一系列整式表示:

a2=alq

a3=a2q

a4=a3q

an=anTq

③等比數(shù)列的通項(xiàng)公式:n=l.n-1(n2).aaq

(2)新知探求

聯(lián)想等差數(shù)列的前n項(xiàng)和推導(dǎo)方法,問:等比數(shù)列前n項(xiàng)的和是否也能

用一個(gè)公式來表示?

(這是學(xué)生完成知識(shí)形成過程的重要一步,應(yīng)留出充分的時(shí)間讓學(xué)生研

究和討論。)

要用al、n、q來表示Sn=al+a2+a3+、、、+an應(yīng)先將a2,a3,,an用

al、n、q來表示。

即:Sn=al+alq+alq+、、、+alqn-l

注意觀察每項(xiàng)的結(jié)構(gòu):每項(xiàng)都是它前面一項(xiàng)的q倍,能否利用這個(gè)q倍,

對(duì)Sn化簡(jiǎn)求和?

(經(jīng)過一番思考)對(duì)Sn兩邊分別乘以q,再與原式相減。經(jīng)師生共同努力,

完成推導(dǎo)過程.

方法一:用〃錯(cuò)位相減法〃推導(dǎo)

方法二:用〃迭加法〃推導(dǎo)

方法三:用〃等比定理法〃推導(dǎo)

這樣設(shè)計(jì)推導(dǎo)方法加強(qiáng)了知識(shí)形成過程的教學(xué),培養(yǎng)了學(xué)生的發(fā)散思

維,既關(guān)注了學(xué)生知識(shí)與技能的理解和掌握,更關(guān)注了學(xué)生情感與態(tài)度的

形成和發(fā)展。而傳統(tǒng)教學(xué)往往以最快的速度給出公式,然后通過例題演練

學(xué)生,這樣教學(xué)結(jié)果往往使學(xué)生死背公式,而不能靈活運(yùn)用公式解決問題。

范文2

1.對(duì)數(shù)學(xué)概念的反思一一學(xué)會(huì)數(shù)學(xué)的思考

對(duì)于學(xué)生來說,學(xué)習(xí)數(shù)學(xué)的一個(gè)重要目的是要學(xué)會(huì)數(shù)學(xué)的思考,用數(shù)學(xué)

的眼光去看世界去了解世界。而對(duì)于數(shù)學(xué)教師來說,他還要從"教〃的角度

去看數(shù)學(xué)去挖掘數(shù)學(xué),他不僅要能''做〃、〃會(huì)理解〃,還應(yīng)當(dāng)能夠教會(huì)別人

去“做〃、去〃理解”,因此教師對(duì)教學(xué)概念的反思應(yīng)當(dāng)從邏輯的、歷史的、

關(guān)系、辨證等方面去展開。

以函數(shù)為例:

?從邏輯的角度看,函數(shù)概念主要包含定義域、值域、對(duì)應(yīng)法則三要

素,以及函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱性等性質(zhì)和一些具體的特

殊函數(shù),如:指數(shù)函數(shù)、對(duì)數(shù)函數(shù)等這些內(nèi)容是函數(shù)教學(xué)的基礎(chǔ),但不是

函數(shù)的全部。

?從關(guān)系的角度來看,不僅函數(shù)的主要內(nèi)容之間存在著種種實(shí)質(zhì)性的

聯(lián)系,函數(shù)與其他中學(xué)數(shù)學(xué)內(nèi)容也有著密切的聯(lián)系。

方程的根可以作為函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo);

不等式的解就是函數(shù)的圖象在軸上方的那一部分所對(duì)應(yīng)的橫坐標(biāo)的集

合;

數(shù)列也就是定義在自然數(shù)集合上的函數(shù);

同樣的幾何內(nèi)容也與函數(shù)有著密切的聯(lián)系。

2.對(duì)學(xué)數(shù)學(xué)的反思

教師在教學(xué)生是不能把他們看著〃空的容器〃,按照自己的意思往這些“

空的容器〃里"灌輸數(shù)學(xué)”這樣常常會(huì)進(jìn)入誤區(qū),因?yàn)閹熒g在數(shù)學(xué)知識(shí)、

數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)、興趣愛好、社會(huì)生活閱歷等方面存在很大的差異,這些差

異使得他們對(duì)同一個(gè)教學(xué)活動(dòng)的感覺通常是不一樣的。

要想多〃制造“一些供課后反思的數(shù)學(xué)學(xué)習(xí)素材,一個(gè)比較有效的方式就

是在教學(xué)過程中盡可能多的把學(xué)生頭腦中問題''擠〃出來,使他們解決問題

的思維過程暴露出來。

3.對(duì)教數(shù)學(xué)的反思

教得好本質(zhì)上是為了促進(jìn)學(xué)得好。但在實(shí)際教學(xué)過程中是否能夠合乎我

們的意愿呢?

我們?cè)谏险n、評(píng)卷、答疑解難時(shí),我們自以為講清楚明白了,學(xué)生受到

了一定的啟發(fā),但反思后發(fā)現(xiàn),自己的講解并沒有很好的針對(duì)學(xué)生原有的

知識(shí)水平,從根本上解決學(xué)生存在的問題,只是一味的想要他們按照某個(gè)

固定的程序去解決某一類問題,學(xué)生當(dāng)時(shí)也許明白了,但并沒有理解問題

的本質(zhì)性的東西。

教學(xué)反思的四個(gè)視角

1.自我經(jīng)歷

在教學(xué)中,我們常常把自己學(xué)習(xí)數(shù)學(xué)的經(jīng)歷作為選擇教學(xué)方法的一個(gè)重

要參照,我們每一個(gè)人都做過學(xué)生,我們每一個(gè)人都學(xué)過數(shù)學(xué),在學(xué)習(xí)過

程中所品嘗過的喜怒哀樂,緊張、痛苦和歡樂的經(jīng)歷對(duì)我們今天的學(xué)生仍

有一定的啟迪。

當(dāng)然,我們已有的數(shù)學(xué)學(xué)習(xí)經(jīng)歷還不夠給自己提供更多、更有價(jià)值、可

用作反思的素材,那么我們可以“重新做一次學(xué)生“以學(xué)習(xí)者的身份從事一

些探索性的活動(dòng),并有意識(shí)的對(duì)活動(dòng)過程的有關(guān)行為做出反思。

2.學(xué)生角度

教學(xué)行為的本質(zhì)在于使學(xué)生受益,教得好是為了促進(jìn)學(xué)得好。我們教師

在備課時(shí)把要講的問題設(shè)計(jì)的十分精巧,連板書都設(shè)計(jì)好了,表面上看天

衣無縫,其實(shí),任何人都會(huì)遭遇失敗,教師把自己思維過程中失敗的部分

隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學(xué)生除了贊嘆我們教師的高

超的解題能力以外,又有什么收獲呢?所以貝爾納說“構(gòu)成我們學(xué)習(xí)上最大

障礙的是已知的東西,而不是未知的東西”

大數(shù)學(xué)家希爾伯特的老師富士在講課時(shí)就常把自己置于困境中,并再現(xiàn)

自己從中走出來的過程,讓學(xué)生看到老師的真實(shí)思維過程是怎樣的。人的

能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問問學(xué)生,對(duì)數(shù)學(xué)學(xué)習(xí)的

感受,借助學(xué)生的眼睛看一看自己的教學(xué)行為,是促進(jìn)教學(xué)的必要手段。

3.與同事交流

?同事之間長(zhǎng)期相處,彼此之間形成了可以討論教學(xué)問題的共同語言、

溝通方式和寬松氛圍,便于展開有意義的討論。

?由于所處的教學(xué)環(huán)境相似、所面對(duì)的教學(xué)對(duì)象知識(shí)和能力水平相近,

因此容易找到共同關(guān)注的教學(xué)問題展開對(duì)彼此都有成效的交流。

?交流的方式很多,比如:共同設(shè)計(jì)教學(xué)活動(dòng)、相互聽課、做課后分

析等等。交流的話題包括:

我覺得這堂課的地方是.....,我覺得這堂課糟糕的地方是.......;這

個(gè)地方的處理不知道怎么樣?如果是你會(huì)怎么處理?

我本想在這里〃放一放〃學(xué)生,但怕收不回來,你覺得該怎么做?

合作解決問題一一共同從事教學(xué)設(shè)計(jì),從設(shè)計(jì)的依據(jù)、出發(fā)點(diǎn),到教學(xué)

重心、基本教學(xué)過程,甚至富有創(chuàng)意的素材或問題。更為重要的是這樣的

設(shè)計(jì)要為其后的教學(xué)反思留下空間。

4.參考資料

學(xué)習(xí)相關(guān)的數(shù)學(xué)教育理論,我們能夠?qū)υS多實(shí)踐中感到疑惑的現(xiàn)象做出

解釋;能夠?qū)Υ嬖谂c現(xiàn)象背后的問題有比較清楚的認(rèn)識(shí);能夠更加理智的

看待自己和他人教學(xué)經(jīng)驗(yàn);能夠更大限度的做出有效的教學(xué)決策。

閱讀數(shù)學(xué)教學(xué)理論可以開闊我們教學(xué)反思行為的思路,不在總是局限在

經(jīng)驗(yàn)的小天地,我們能夠看到自己的教學(xué)實(shí)踐行為有哪些與特定的教學(xué)情

境有關(guān)、哪些更帶有普遍的意義,從而對(duì)這些行為有較為客觀的評(píng)價(jià)。能

夠使我們更加理性的從事教學(xué)反思活動(dòng)并對(duì)反思得到的結(jié)論更加有信心。

更為重要的是,閱讀教學(xué)理論,可以使我們理智的看待自己教學(xué)活動(dòng)中

“熟悉的〃、”習(xí)慣性〃的行為,能夠從更深刻的層面反思題目進(jìn)而使自己的

專業(yè)發(fā)展走上良性發(fā)展的軌道。

教師的職業(yè)需要專門化,教師的專業(yè)發(fā)展是不可或缺的,它的最為便利

而又十分有效的途徑是教學(xué)反思。沒有反思,專業(yè)能力不可能有實(shí)質(zhì)性的

提高,而教學(xué)反思的對(duì)象和機(jī)會(huì)就在每一個(gè)教師的身邊.

范文3

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度

抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙

曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用

圓錐曲線定義來熟練的解題

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算

能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

三、設(shè)計(jì)思想

由于這部分知識(shí)較為抽象,如果離開感性認(rèn)識(shí),容易使學(xué)生陷入困境,降

低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫,引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問題、解決問

題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

四、教學(xué)目標(biāo)

1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問題;熟

練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑

等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

2.通過對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問題的能

力;通過對(duì)問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

五、教學(xué)重點(diǎn)與難點(diǎn):

教學(xué)重點(diǎn)

1.對(duì)圓錐曲線定義的理解

2.利用圓錐曲線的定義求〃最值”

3.“定義法”求軌跡方程

教學(xué)難點(diǎn):

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計(jì)

【設(shè)計(jì)思路】

(一)開門見山,提出問題

一上課,我就直截了當(dāng)?shù)亟o出一一

例題1:(1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M

的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(xl)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設(shè)計(jì)意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)

習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓

錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我

本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,

精心準(zhǔn)備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的

定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:

若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分

知識(shí)的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周

折一一如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著

他的思路,先對(duì)原等式做變形:(xl)2(y2)2

5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端

的式子|3x4y|

5

入手,考慮通過適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

在對(duì)學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐

標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。

(二)理解定義、解決問題

例2⑴已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910

相內(nèi)切,求aABC面積的最大值。

(2)在⑴的條件下,給定點(diǎn)P(-2,2),求|PA|

【設(shè)計(jì)意圖】

運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大

(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易

混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

【學(xué)情預(yù)設(shè)】

根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解

答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點(diǎn)A的軌跡,

有了練習(xí)題1的鋪墊,這個(gè)問題對(duì)學(xué)生們來講就顯得頗為簡(jiǎn)單,因此面對(duì)

例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較

陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這

樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

(三)自主探究、深化認(rèn)識(shí)

如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)一一

練習(xí):設(shè)點(diǎn)Q是圓點(diǎn)(xl)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,

0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),

當(dāng)然,如果課堂上時(shí)間允許的話,

可借助〃多媒體課件〃,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

【知識(shí)鏈接】

(一)圓錐曲線的定義

1.圓錐曲線的第一定義

2.圓錐曲線的統(tǒng)一定義

(二)圓錐曲線定義的應(yīng)用舉例

x2y2

1.雙曲線1的兩焦點(diǎn)為Fl、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的

距離為12,求P169

到右準(zhǔn)線的距離。

|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)l、F2為兩焦點(diǎn),0為

雙曲線的中心,求的|P0|

取值范圍。

3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,

求拋物線的方程和點(diǎn)A的坐標(biāo)。

x2y2

4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一

個(gè)定點(diǎn),求259

|MA|+|MF|的最小值。

x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右

支上移動(dòng),當(dāng)9272

1|AM||MF|最小時(shí),求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論