江蘇省無錫市江陰初級中學(xué)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
江蘇省無錫市江陰初級中學(xué)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
江蘇省無錫市江陰初級中學(xué)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
江蘇省無錫市江陰初級中學(xué)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
江蘇省無錫市江陰初級中學(xué)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省無錫市江陰初級中學(xué)2024年畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的幾何體的俯視圖是()A. B. C. D.2.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處3.方程組的解x、y滿足不等式2x﹣y>1,則a的取值范圍為()A.a(chǎn)≥ B.a(chǎn)> C.a(chǎn)≤ D.a(chǎn)>4.如圖,點E在△DBC的邊DB上,點A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正確的是()A.①②③④ B.②④ C.①②③ D.①③④5.下列各圖中,∠1與∠2互為鄰補(bǔ)角的是()A. B.C. D.6.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.7.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.8.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米9.下列幾何體中三視圖完全相同的是()A. B. C. D.10.一球鞋廠,現(xiàn)打折促銷賣出330雙球鞋,比上個月多賣10%,設(shè)上個月賣出x雙,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=33011.若一個圓錐的底面半徑為3cm,母線長為5cm,則這個圓錐的全面積為()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm212.通過觀察下面每個圖形中5個實數(shù)的關(guān)系,得出第四個圖形中y的值是()A.8 B.﹣8 C.﹣12 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實數(shù)根,則m的值為_________14.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結(jié)BD,若∠A=32°,則∠CDB的大小為_____度.15.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.16.已知二次函數(shù)中,函數(shù)y與x的部分對應(yīng)值如下:...-10123......105212...則當(dāng)時,x的取值范圍是_________.17.分式方程=1的解為_____18.如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.20.(6分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當(dāng)C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數(shù)量關(guān)系.②猜測線段AF,BF與CE的數(shù)量關(guān)系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.21.(6分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經(jīng)過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內(nèi)部一點,在拋物線上是否存在點B,使△MBF的周長最?。咳舸嬖?,求出這個最小值及直線l的解析式;若不存在,請說明理由.22.(8分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當(dāng)與滿足什么關(guān)系時,四邊形是正方形?請說明理由.23.(8分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應(yīng)值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.24.(10分)一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.25.(10分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當(dāng)圖中陰影部分的面積最小值時,求點M的坐標(biāo);(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標(biāo).26.(12分)在平面直角坐標(biāo)系xOy中,已知兩點A(0,3),B(1,0),現(xiàn)將線段AB繞點B按順時針方向旋轉(zhuǎn)90°得到線段BC,拋物線y=ax2+bx+c經(jīng)過點C.(1)如圖1,若拋物線經(jīng)過點A和D(﹣2,0).①求點C的坐標(biāo)及該拋物線解析式;②在拋物線上是否存在點P,使得∠POB=∠BAO,若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由;(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(2,1),點Q在拋物線上,且滿足∠QOB=∠BAO,若符合條件的Q點恰好有2個,請直接寫出a的取值范圍.27.(12分)小明準(zhǔn)備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機(jī)的一個機(jī)翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結(jié)果保留根號).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.2、D【解析】

到三條相互交叉的公路距離相等的地點應(yīng)是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內(nèi)角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內(nèi)角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質(zhì);這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.3、B【解析】

方程組兩方程相加表示出2x﹣y,代入已知不等式即可求出a的范圍.【詳解】①+②得:解得:故選:B.【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.4、A【解析】分析:只要證明△DAB≌△EAC,利用全等三角形的性質(zhì)即可一一判斷;詳解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正確,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正確,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正確,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正確,故選A.點睛:本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考選擇題中的壓軸題.5、D【解析】根據(jù)鄰補(bǔ)角的定義可知:只有D圖中的是鄰補(bǔ)角,其它都不是.故選D.6、A【解析】【分析】根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點睛】本題考查了銳角三角函數(shù)的定義,能熟記銳角三角函數(shù)的定義的內(nèi)容是解此題的關(guān)鍵.7、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.8、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運(yùn)用,利用梯子長度不變找到斜邊是關(guān)鍵.9、A【解析】

找到從物體正面、左面和上面看得到的圖形全等的幾何體即可.【詳解】解:A、球的三視圖完全相同,都是圓,正確;B、圓柱的俯視圖與主視圖和左視圖不同,錯誤;C、圓錐的俯視圖與主視圖和左視圖不同,錯誤;D、四棱錐的俯視圖與主視圖和左視圖不同,錯誤;故選A.【點睛】考查三視圖的有關(guān)知識,注意三視圖都相同的常見的幾何體有球和正方體.10、D【解析】解:設(shè)上個月賣出x雙,根據(jù)題意得:(1+10%)x=1.故選D.11、B【解析】試題分析:底面積是:9πcm1,底面周長是6πcm,則側(cè)面積是:×6π×5=15πcm1.則這個圓錐的全面積為:9π+15π=14πcm1.故選B.考點:圓錐的計算.12、D【解析】

根據(jù)前三個圖形中數(shù)字之間的關(guān)系找出運(yùn)算規(guī)律,再代入數(shù)據(jù)即可求出第四個圖形中的y值.【詳解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故選D.【點睛】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)圖形中數(shù)與數(shù)之間的關(guān)系找出運(yùn)算規(guī)律是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點:一元二次方程根的判別式.14、1【解析】

根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質(zhì)以及三角形外角的性質(zhì)在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【點睛】本題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì),掌握等邊對等角是解題的關(guān)鍵,注意三角形內(nèi)角和定理的應(yīng)用.15、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應(yīng)邊相等可得EC=AB=4,然后再利用三角形面積公式進(jìn)行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關(guān)鍵.16、0<x<4【解析】

根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結(jié)合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質(zhì),利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學(xué)們應(yīng)熟練掌握.17、x=0.1【解析】分析:方程兩邊都乘以最簡公分母,化為整式方程,然后解方程,再進(jìn)行檢驗.詳解:方程兩邊都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,檢驗:當(dāng)x=0.1時,x﹣1=0.1﹣1=﹣0.1≠0,當(dāng)x=1時,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案為:x=0.1點睛:本題考查了解分式方程,(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.(2)解分式方程一定注意要驗根.18、2【解析】分析:因為BP=,AB的長不變,當(dāng)PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設(shè)直線與x軸,y軸分別交于D,C.∵A的坐標(biāo)為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當(dāng)其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1.【解析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結(jié)論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.20、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見解析;(3)FG=.【解析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問題;②利用①中結(jié)論即可解決問題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問題;【詳解】解:(1)證明:①如圖1,過點C做CD⊥BF,交FB的延長線于點D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過點C作CG⊥BF,交BF延長線于點G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過點C做CD⊥BF,交FB的于點D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點睛】本題考查幾何變換綜合題、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.21、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最?。鱉BF周長的最小值為11,直線l的解析式為.【解析】

(1)用待定系數(shù)法將已知兩點的坐標(biāo)代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設(shè)B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標(biāo),運(yùn)用勾股定理表示出的長度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當(dāng)點運(yùn)動到位置時,△MBF周長取得最小值,根據(jù)求平面直角坐標(biāo)系里任意兩點之間的距離的方法代入點與的坐標(biāo)求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標(biāo)代入二次函數(shù)求出,再聯(lián)立與的坐標(biāo)求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設(shè)B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據(jù)垂線段最短可知:MN<MB+BE∴當(dāng)點B在點B1處時,△MBF的周長最小∵M(jìn)(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【點睛】本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質(zhì),等腰三角形的性質(zhì),動點與最值問題等,熟練掌握各個知識點,結(jié)合圖象作出合理輔助線,進(jìn)行適當(dāng)?shù)霓D(zhuǎn)化是解答關(guān)鍵.22、見解析【解析】

(1)由菱形的性質(zhì)得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位線定理證出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)證明△BCE≌△DCF即可;

(2)由(1)得:AE=OE=OF=AF,證出四邊形AEOF是菱形,再證出∠AEO=90°,四邊形AEOF是正方形.【詳解】(1)證明:∵四邊形ABCD是菱形,∴∠B=∠D,AB=BC=DC=AD,∵點E,O,F(xiàn)分別為AB,AC,AD的中點,∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)當(dāng)AB⊥BC時,四邊形AEOF是正方形,理由如下:由(1)得:AE=OE=OF=AF,∴四邊形AEOF是菱形,∵AB⊥BC,OE∥BC,∴OE⊥AB,∴∠AEO=90°,∴四邊形AEOF是正方形.【點睛】本題考查了全等三角形、菱形、正方形的性質(zhì),解題的關(guān)鍵是熟練的掌握菱形、正方形、全等三角形的性質(zhì).23、(1)任意實數(shù);(2);(3)見解析;(4)①當(dāng)x<﹣2時,y隨x的增大而增大;②當(dāng)x>2時,y隨x的增大而增大.【解析】

(1)沒有限定要求,所以x為任意實數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點,連線即可解題,(4)看圖確定極點坐標(biāo),即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實數(shù);故答案為任意實數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當(dāng)x<﹣2時,y隨x的增大而增大;②當(dāng)x>2時,y隨x的增大而增大.故答案為①當(dāng)x<﹣2時,y隨x的增大而增大;②當(dāng)x>2時,y隨x的增大而增大.【點睛】本題考查了函數(shù)的圖像和性質(zhì),屬于簡單題,熟悉函數(shù)的圖像和概念是解題關(guān)鍵.24、(1)汽車行駛400千米,剩余油量30升,加滿油時,油量為70升;(2)已行駛的路程為650千米.【解析】

(1)觀察圖象,即可得到油箱內(nèi)的剩余油量,根據(jù)耗油量計算出加滿油時油箱的油量;用待定系數(shù)法求出一次函數(shù)解析式,再代入進(jìn)行運(yùn)算即可.【詳解】(1)汽車行駛400千米,剩余油量30升,即加滿油時,油量為70升.(2)設(shè),把點,坐標(biāo)分別代入得,,∴,當(dāng)時,,即已行駛的路程為650千米.【點睛】本題主要考查了待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點的坐標(biāo)特征等,關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.25、(1)y=12x2-x-4(2)點M的坐標(biāo)為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點式y(tǒng)=a(x+2)(x-4),然后把C點坐標(biāo)代入求出a即可得到拋物線解析式;

(2)連接OM,設(shè)點M的坐標(biāo)為m,12m2-m-4.由題意知,當(dāng)四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設(shè)點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設(shè)點M的坐標(biāo)為m,1由題意知,當(dāng)四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當(dāng)m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標(biāo)為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關(guān)于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設(shè)點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標(biāo)為-83或-4【點睛】本題考核知識點:二次函數(shù)綜合運(yùn)用.解題關(guān)鍵點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論