江蘇省南京十八中學(xué)2024年中考數(shù)學(xué)全真模擬試卷含解析_第1頁
江蘇省南京十八中學(xué)2024年中考數(shù)學(xué)全真模擬試卷含解析_第2頁
江蘇省南京十八中學(xué)2024年中考數(shù)學(xué)全真模擬試卷含解析_第3頁
江蘇省南京十八中學(xué)2024年中考數(shù)學(xué)全真模擬試卷含解析_第4頁
江蘇省南京十八中學(xué)2024年中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省南京十八中學(xué)2024年中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,點(diǎn)A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°2.已知:如圖,點(diǎn)P是正方形ABCD的對角線AC上的一個動點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.3.如圖,在?ABCD中,AB=2,BC=1.以點(diǎn)C為圓心,適當(dāng)長為半徑畫弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點(diǎn)N,射線CN交BA的延長線于點(diǎn)E,則AE的長是()A. B.1 C. D.4.如圖,AB∥CD,那么()A.∠BAD與∠B互補(bǔ) B.∠1=∠2 C.∠BAD與∠D互補(bǔ) D.∠BCD與∠D互補(bǔ)5.如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°6.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm7.下列代數(shù)運(yùn)算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x58.若,,則的值是()A.2 B.﹣2 C.4 D.﹣49.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.10.如圖,把一塊含有45°角的直角三角板的兩個頂點(diǎn)放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是()A.30° B.25°C.20° D.15°二、填空題(本大題共6個小題,每小題3分,共18分)11.已知同一個反比例函數(shù)圖象上的兩點(diǎn)、,若,且,則這個反比例函數(shù)的解析式為______.12.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到ΔA′B′C′,且點(diǎn)A在A′B′上,則旋轉(zhuǎn)角為________________°.13.如圖,在□ABCD中,AC與BD交于點(diǎn)M,點(diǎn)F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點(diǎn)E是BC的中點(diǎn),若點(diǎn)P以1cm/秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動;點(diǎn)Q同時以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動.點(diǎn)P運(yùn)動到F點(diǎn)時停止運(yùn)動,點(diǎn)Q也同時停止運(yùn)動.當(dāng)點(diǎn)P運(yùn)動_____秒時,以點(diǎn)P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.14.如圖,邊長一定的正方形ABCD,Q是CD上一動點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.15.如圖,點(diǎn)A、B、C在圓O上,弦AC與半徑OB互相平分,那么∠AOC度數(shù)為_____度.16.用換元法解方程,設(shè)y=,那么原方程化為關(guān)于y的整式方程是_____.三、解答題(共8題,共72分)17.(8分)如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).求直線AB的解析式和點(diǎn)B的坐標(biāo);求△ABP的面積(用含n的代數(shù)式表示);當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).18.(8分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.19.(8分)如圖,,,,求證:。20.(8分)如圖,在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);甲、乙兩船分別從A,B兩港口同時出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時?21.(8分)(1)計(jì)算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.22.(10分)觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.23.(12分)如圖,M是平行四邊形ABCD的對角線上的一點(diǎn),射線AM與BC交于點(diǎn)F,與DC的延長線交于點(diǎn)H.(1)求證:AM2=MF.MH(2)若BC2=BD.DM,求證:∠AMB=∠ADC.24.如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),其中點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).(1)求拋物線的解析式;(2)將拋物線向下平移h個單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;(3)設(shè)點(diǎn)P是拋物線上且在x軸上方的任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【點(diǎn)睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.2、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數(shù).故選A.3、B【解析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點(diǎn)睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.4、C【解析】

分清截線和被截線,根據(jù)平行線的性質(zhì)進(jìn)行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補(bǔ),即C選項(xiàng)符合題意;當(dāng)AD∥BC時,∠BAD與∠B互補(bǔ),∠1=∠2,∠BCD與∠D互補(bǔ),故選項(xiàng)A、B、D都不合題意,故選:C.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.5、D【解析】

根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.6、D【解析】

過A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點(diǎn)睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關(guān)鍵.7、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進(jìn)行逐一計(jì)算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點(diǎn)睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關(guān)鍵.8、D【解析】因?yàn)?所以,因?yàn)?故選D.9、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.【詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.10、B【解析】根據(jù)題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,二、填空題(本大題共6個小題,每小題3分,共18分)11、y=【解析】解:設(shè)這個反比例函數(shù)的表達(dá)式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數(shù)圖象上的兩點(diǎn),∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數(shù)的解析式為:y=.故答案為y=.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,所有在反比例函數(shù)上的點(diǎn)的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).同時考查了式子的變形.12、50度【解析】

由將△ACB繞點(diǎn)C順時針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點(diǎn)C順時針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點(diǎn)睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.13、3或1【解析】

由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當(dāng)點(diǎn)P運(yùn)動t秒時,點(diǎn)P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點(diǎn)E是BC的中點(diǎn),∴CE=BC=AD=9cm,要使點(diǎn)P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形,則PF=EQ即可,設(shè)當(dāng)點(diǎn)P運(yùn)動t秒時,點(diǎn)P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.14、①②③④【解析】①如圖1,作AU⊥NQ于U,交BD于H,連接AN,AC,∵∠AMN=∠ABC=90°,∴A,B,N,M四點(diǎn)共圓,∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,∴∠ANM=∠NAM=45°,∴AM=MN;②由同角的余角相等知,∠HAM=∠PMN,∴Rt△AHM≌Rt△MPN,∴MP=AH=AC=BD;③∵∠BAN+∠QAD=∠NAQ=45°,∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,∴點(diǎn)U在NQ上,有BN+DQ=QU+UN=NQ;④如圖2,作MS⊥AB,垂足為S,作MW⊥BC,垂足為W,點(diǎn)M是對角線BD上的點(diǎn),∴四邊形SMWB是正方形,有MS=MW=BS=BW,∴△AMS≌△NMW∴AS=NW,∴AB+BN=SB+BW=2BW,∵BW:BM=1:,∴.故答案為:①②③④點(diǎn)睛:本題考查了正方形的性質(zhì),四點(diǎn)共圓的判定,圓周角定理,等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì);熟練掌握正方形的性質(zhì),正確作出輔助線并運(yùn)用有關(guān)知識理清圖形中西安段間的關(guān)系,證明三角形全等是解決問題的關(guān)鍵.15、1.【解析】

首先根據(jù)垂徑定理得到OA=AB,結(jié)合等邊三角形的性質(zhì)即可求出∠AOC的度數(shù).【詳解】解:∵弦AC與半徑OB互相平分,∴OA=AB,∵OA=OC,∴△OAB是等邊三角形,∴∠AOB=60°,∴∠AOC=1°,故答案為1.【點(diǎn)睛】本題主要考查了垂徑定理的知識,解題的關(guān)鍵是證明△OAB是等邊三角形,此題難度不大.16、6y2-5y+2=0【解析】

根據(jù)y=,將方程變形即可.【詳解】根據(jù)題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【點(diǎn)睛】此題考查了換元法解分式方程,利用了整體的思想,將方程進(jìn)行適當(dāng)?shù)淖冃问墙獗绢}的關(guān)鍵.三、解答題(共8題,共72分)17、(1)AB的解析式是y=-x+1.點(diǎn)B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標(biāo)代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標(biāo);(2)過點(diǎn)A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當(dāng)S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點(diǎn)求解.試題解析:(1)∵y=-x+b經(jīng)過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當(dāng)y=0時,0=-x+1,解得x=3,∴點(diǎn)B(3,0).(2)過點(diǎn)A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點(diǎn)D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點(diǎn)B(3,0),可知點(diǎn)B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當(dāng)S△ABP=2時,n-1=2,解得n=2,∴點(diǎn)P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點(diǎn)C作CN⊥直線x=1于點(diǎn)N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點(diǎn)C作CF⊥x軸于點(diǎn)F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點(diǎn)C的坐標(biāo)是(3,4)或(5,2)或(3,2).考點(diǎn):一次函數(shù)綜合題.18、(1)證明見解析;(2)結(jié)論:四邊形ACDF是矩形.理由見解析.【解析】

(1)只要證明AB=CD,AF=CD即可解決問題;(2)結(jié)論:四邊形ACDF是矩形.根據(jù)對角線相等的平行四邊形是矩形判斷即可;【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:結(jié)論:四邊形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四邊形ACDF是平行四邊形,∵四邊形ABCD是平行四邊形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等邊三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四邊形ACDF是矩形.【點(diǎn)睛】本題考查平行四邊形的判定和性質(zhì)、矩形的判定、全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題.19、見解析【解析】

據(jù)∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【點(diǎn)睛】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角20、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時,乙船的速度是20海里/時【解析】

(1)過點(diǎn)P作PE⊥AB于點(diǎn)E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進(jìn)行檢驗(yàn)即可得.【詳解】(1)如圖,過點(diǎn)P作PE⊥MN,垂足為E,由題意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP==30≈42海里,故AP=60海里,BP=42(海里);(2)設(shè)乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)題意,得,解得x=20,經(jīng)檢驗(yàn),x=20是原方程的解,甲船的速度為1.2x=1.2×20=24(海里/時).,答:甲船的速度是24海里/時,乙船的速度是20海里/時.【點(diǎn)睛】本題考查了勾股定理的應(yīng)用,分式方程的應(yīng)用,含30度角的直角三角形的性質(zhì),等腰直角三角形的判定與性質(zhì),熟練掌握各相關(guān)知識是解題的關(guān)鍵.21、(1);(1)1.【解析】

(1)先計(jì)算負(fù)整數(shù)指數(shù)冪、化簡二次根式、代入三角函數(shù)值、計(jì)算零指數(shù)冪,再計(jì)算乘法和加減運(yùn)算可得;(1)先根據(jù)整式的混合運(yùn)算順序和運(yùn)算法則化簡原式,再利用完全平方公式因式分解,最后將a?b的值整體代入計(jì)算可得.【詳解】(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,當(dāng)a﹣b=時,原式=()1=1.【點(diǎn)睛】本題主要考查實(shí)數(shù)和整式的混合運(yùn)算,解題的關(guān)鍵是掌握實(shí)數(shù)與整式的混合運(yùn)算順序和運(yùn)算法則及完全平方公式因式分解的能力.22、6×10+4=8248×52+4【解析】

(1)根據(jù)題目中的式子的變化規(guī)律可以解答本題;(2)根據(jù)題目中的式子的變化規(guī)律可以解答本題;(3)根據(jù)題目中的式子的變化規(guī)律可以寫出第n個等式,并加以證明.【詳解】解:(1)由題目中的式子可得,第⑥個等式:6×10+4=82,故答案為6×10+4=82;(2)由題意可得,48×52+4=502,故答案為48×52+4;(3)第n個等式是:n×(n+4)+4=(n+2)2,證明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【點(diǎn)睛】本題考查有理數(shù)的混合運(yùn)算、數(shù)字的變化類,解答本題的關(guān)鍵是明確有理數(shù)的混合運(yùn)算的計(jì)算方法.23、(1)證明見解析;(2)證明見解析.【解析】

(1)由于AD∥BC,AB∥CD,通過三角形相似,找到分別于,都相等的比,把比例式變形為等積式,問題得證.(2)推出∽,再結(jié)合,可證得答案.【詳解】(1)證明:∵四邊形是平行四邊形,∴,,∴,,∴即.(2)∵四邊形是平行四邊形,∴,又∵,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論