遼寧省大連市高新園區(qū)2023-2024學年中考數(shù)學全真模擬試題含解析_第1頁
遼寧省大連市高新園區(qū)2023-2024學年中考數(shù)學全真模擬試題含解析_第2頁
遼寧省大連市高新園區(qū)2023-2024學年中考數(shù)學全真模擬試題含解析_第3頁
遼寧省大連市高新園區(qū)2023-2024學年中考數(shù)學全真模擬試題含解析_第4頁
遼寧省大連市高新園區(qū)2023-2024學年中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

遼寧省大連市高新園區(qū)2023-2024學年中考數(shù)學全真模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.42.計算的值()A.1 B. C.3 D.3.如圖,AD∥BC,AC平分∠BAD,若∠B=40°,則∠C的度數(shù)是()A.40° B.65° C.70° D.80°4.對于非零的兩個實數(shù)、,規(guī)定,若,則的值為()A. B. C. D.5.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B的坐標為(0,4),將△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經(jīng)過點O',則k的值為()A.2 B.4 C.4 D.86.下列運算,結(jié)果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+47.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數(shù)是A. B. C. D.8.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°9.實數(shù)的相反數(shù)是()A.- B. C. D.10.歐幾里得的《原本》記載,形如的方程的圖解法是:畫,使,,,再在斜邊上截取.則該方程的一個正根是()A.的長 B.的長 C.的長 D.的長二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經(jīng)過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數(shù)y=圖象上,則k=_______.12.如圖,在△ABC中,∠C=90°,D是AC上一點,DE⊥AB于點E,若AC=8,BC=6,DE=3,則AD的長為________.13.已知是二元一次方程組的解,則m+3n的立方根為__.14.用一張扇形紙片圍成一個圓錐的側(cè)面(接縫處不計),若這個扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個圓錐的母線長為_____cm.15.已知二次函數(shù)的部分圖象如圖所示,則______;當x______時,y隨x的增大而減?。?6.在Rt△ABC內(nèi)有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.(1)求拋物線的解析式;(2)若點F是直線BC上方的拋物線上的一個動點,是否存在點F使四邊形ABFC的面積最大,若存在,求出點F的坐標和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求P點的坐標.18.(8分)小王上周五在股市以收盤價(收市時的價格)每股25元買進某公司股票1000股,在接下來的一周交易日內(nèi),小王記下該股票每日收盤價格相比前一天的漲跌情況:(單位:元)星期一二三四五每股漲跌(元)+2﹣1.4+0.9﹣1.8+0.5根據(jù)上表回答問題:(1)星期二收盤時,該股票每股多少元?(2)周內(nèi)該股票收盤時的最高價,最低價分別是多少?(3)已知買入股票與賣出股票均需支付成交金額的千分之五的交易費.若小王在本周五以收盤價將全部股票賣出,他的收益情況如何?19.(8分)如圖,在△OAB中,OA=OB,C為AB中點,以O為圓心,OC長為半徑作圓,AO與⊙O交于點E,OB與⊙O交于點F和D,連接EF,CF,CF與OA交于點G(1)求證:直線AB是⊙O的切線;(2)求證:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.20.(8分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.21.(8分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.22.(10分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.23.(12分)某校檢測學生跳繩水平,抽樣調(diào)查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?24.如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:過O1、O2作直線,以O1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關系,結(jié)合三個圓的半徑大小即可得到本題所求答案.2、A【解析】

根據(jù)有理數(shù)的加法法則進行計算即可.【詳解】故選:A.【點睛】本題主要考查有理數(shù)的加法,掌握有理數(shù)的加法法則是解題的關鍵.3、C【解析】

根據(jù)平行線性質(zhì)得出∠B+∠BAD=180°,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度數(shù).【詳解】解:∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=40°,∴∠BAD=140°,∵AC平分∠DAB,∴∠DAC=∠BAD=70°,∵A∥BC,∴∠C=∠DAC=70°,故選C.【點睛】本題考查了平行線性質(zhì)和角平分線定義,關鍵是求出∠DAC或∠BAC的度數(shù).4、D【解析】試題分析:因為規(guī)定,所以,所以x=,經(jīng)檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.5、C【解析】

根據(jù)題意可以求得點O'的坐標,從而可以求得k的值.【詳解】∵點B的坐標為(0,4),

∴OB=4,

作O′C⊥OB于點C,

∵△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點O′的坐標為:(2,2),

∵函數(shù)y=(x>0)的圖象經(jīng)過點O',

∴2=,得k=4,

故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化,解題的關鍵是利用數(shù)形結(jié)合的思想和反比例函數(shù)的性質(zhì)解答.6、B【解析】

直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【點睛】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.7、A【解析】分析:首先求出∠AEB,再利用三角形內(nèi)角和定理求出∠B,最后利用平行四邊形的性質(zhì)得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質(zhì)、平行四邊形的性質(zhì)、三角形內(nèi)角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.8、B【解析】

直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對頂角的性質(zhì)得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關鍵.9、A【解析】

根據(jù)相反數(shù)的定義即可判斷.【詳解】實數(shù)的相反數(shù)是-故選A.【點睛】此題主要考查相反數(shù)的定義,解題的關鍵是熟知相反數(shù)的定義即可求解.10、B【解析】【分析】可以利用求根公式求出方程的根,根據(jù)勾股定理求出AB的長,進而求得AD的長,即可發(fā)現(xiàn)結(jié)論.【解答】用求根公式求得:∵∴∴AD的長就是方程的正根.故選B.【點評】考查解一元二次方程已經(jīng)勾股定理等,熟練掌握公式法解一元二次方程是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:根據(jù)題意得出點B的坐標,根據(jù)面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據(jù)一次函數(shù)可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數(shù)的性質(zhì)以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關鍵.12、1【解析】

如圖,由勾股定理可以先求出AB的值,再證明△AED∽△ACB,根據(jù)相似三角形的性質(zhì)就可以求出結(jié)論.【詳解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案為1【點睛】本題考查了勾股定理的運用,相似三角形的判定及性質(zhì)的運用,解答時求出△AED∽△ACB是解答本題的關鍵.13、3【解析】

把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3【點睛】此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數(shù)的值.14、1【解析】

設這個圓錐的母線長為xcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設這個圓錐的母線長為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個圓錐的母線長為1cm.故答案為1.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.15、3,>1【解析】

根據(jù)函數(shù)圖象與x軸的交點,可求出c的值,根據(jù)圖象可判斷函數(shù)的增減性.【詳解】解:因為二次函數(shù)的圖象過點.

所以,

解得.

由圖象可知:時,y隨x的增大而減?。?/p>

故答案為(1).3,(2).>1【點睛】此題考查二次函數(shù)圖象的性質(zhì),數(shù)形結(jié)合法是解決函數(shù)問題經(jīng)常采用的一種方法,關鍵是要找出圖象與函數(shù)解析式之間的聯(lián)系.16、1【解析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點睛:本題主要考查相似三角形的判定和性質(zhì)、正方形的性質(zhì),解題的關鍵在于找到相似三角形,用x的表達式表示出對應邊是解題的關鍵.三、解答題(共8題,共72分)17、(1)、y=-+x+4;(2)、不存在,理由見解析.【解析】試題分析:(1)、首先設拋物線的解析式為一般式,將點C和點A意見對稱軸代入求出函數(shù)解析式;(2)、本題利用假設法來進行證明,假設存在這樣的點,然后設出點F的坐標求出FH和FG的長度,然后得出面積與t的函數(shù)關系式,根據(jù)方程無解得出結(jié)論.試題解析:(1)、∵拋物線y=a+bx+c(a≠0)過點C(0,4)∴C=4①∵-=1∴b=-2a②∵拋物線過點A(-2,0)∴4a-2b+c="0"③由①②③解得:a=-,b=1,c=4∴拋物線的解析式為:y=-+x+4(2)、不存在假設存在滿足條件的點F,如圖所示,連結(jié)BF、CF、OF,過點F作FH⊥x軸于點H,F(xiàn)G⊥y軸于點G.設點F的坐標為(t,+t+4),其中0<t<4則FH=+t+4FG=t∴△OBF的面積=OB·FH=×4×(+t+4)=-+2t+8△OFC的面積=OC·FG=2t∴四邊形ABFC的面積=△AOC的面積+△OBF的面積+△OFC的面積=-+4t+12令-+4t+12=17即-+4t-5=0△=16-20=-4<0∴方程無解∴不存在滿足條件的點F考點:二次函數(shù)的應用18、(1)25.6元;(2)收盤最高價為27元/股,收盤最低價為24.7元/股;(3)-51元,虧損51元.【解析】試題分析:(1)根據(jù)有理數(shù)的加減法的運算方法,求出星期二收盤時,該股票每股多少元即可.(2)這一周內(nèi)該股票星期一的收盤價最高,星期四的收盤價最低.(3)用本周五以收盤價將全部股票賣出后得到的錢數(shù)減去買入股票與賣出股票均需支付的交易費,判斷出他的收益情況如何即可.試題解析:(1)星期二收盤價為25+2?1.4=25.6(元/股)答:該股票每股25.6元.(2)收盤最高價為25+2=27(元/股)收盤最低價為25+2?1.45+0.9?1.8=24.7(元/股)答:收盤最高價為27元/股,收盤最低價為24.7元/股.(3)(25.2-25)×1000-5‰×1000×(25.2+25)=200-251=-51(元)答:小王的本次收益為-51元.19、(1)見解析;(2)見解析;(3).【解析】

(1)利用等腰三角形的性質(zhì),證明OC⊥AB即可;

(2)證明OC∥EG,推出△GOC∽△GEF即可解決問題;

(3)根據(jù)勾股定理和三角函數(shù)解答即可.【詳解】證明:(1)∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切線.(2)∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴,∵OD=OC,∴OD?EG=OG?EF.(3)∵AB=4BD,∴BC=2BD,設BD=m,BC=2m,OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,∴sinA=sinB=.【點睛】考查圓的綜合題,考查切線的判定、等腰三角形的性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關鍵是靈活運用所學知識解決問題.20、(1)證明見解析;(2);【解析】

(1)根據(jù)正方形的性質(zhì)得到∠GAD=∠EAB,證明△GAD≌△EAB,根據(jù)全等三角形的性質(zhì)證明;(2)根據(jù)正方形的性質(zhì)得到BD⊥AC,AC=BD=5,根據(jù)勾股定理計算即可.【詳解】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,∴∠GAD=∠EAB,在△GAD和△EAB中,,∴△GAD≌△EAB,∴EB=GD;(2)∵四邊形ABCD是正方形,AB=5,∴BD⊥AC,AC=BD=5,∴∠DOG=90°,OA=OD=BD=,∵AG=2,∴OG=OA+AG=,由勾股定理得,GD==,∴EB=.【點睛】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的對角線相等、垂直且互相平分是解題的關鍵.21、(1)-7;(2),.【解析】

(1)原式第一項利用算術平方根定義計算,第二項利用特殊角的三角函數(shù)值計算,第三項利用零指數(shù)冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結(jié)果;

(2)原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,利用非負數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點睛】本題考查了實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值,解題的關鍵是熟練的掌握實數(shù)的運算、非負數(shù)的性質(zhì)與分式的化簡求值的運用.22、(1)DD′=1,A′F=4﹣;(2);(1).【解析】

(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論