版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省成都東辰國際校2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則反比例函數(shù)y=與一次函數(shù)y=bx﹣c在同一坐標(biāo)系內(nèi)的圖象大致是()A. B. C. D.2.在平面直角坐標(biāo)系xOy中,若點(diǎn)P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>53.計(jì)算3a2-a2的結(jié)果是()A.4a2B.3a2C.2a2D.34.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個(gè)角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.5.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在6.下列說法:①平分弦的直徑垂直于弦;②在n次隨機(jī)實(shí)驗(yàn)中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個(gè)事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個(gè)數(shù)()A.1 B.2 C.3 D.47.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為()cm.A. B. C. D.8.若拋物線y=x2﹣3x+c與y軸的交點(diǎn)為(0,2),則下列說法正確的是()A.拋物線開口向下B.拋物線與x軸的交點(diǎn)為(﹣1,0),(3,0)C.當(dāng)x=1時(shí),y有最大值為0D.拋物線的對稱軸是直線x=9.點(diǎn)A、C為半徑是4的圓周上兩點(diǎn),點(diǎn)B為的中點(diǎn),以線段BA、BC為鄰邊作菱形ABCD,頂點(diǎn)D恰在該圓半徑的中點(diǎn)上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或210.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知圓錐的底面半徑為,母線長為,則它的側(cè)面展開圖的面積等于__________.12.某市對九年級學(xué)生進(jìn)行“綜合素質(zhì)”評價(jià),評價(jià)結(jié)果分為A,B,C,D,E五個(gè)等級.現(xiàn)隨機(jī)抽取了500名學(xué)生的評價(jià)結(jié)果作為樣本進(jìn)行分析,繪制了如圖所示的統(tǒng)計(jì)圖.已知圖中從左到右的五個(gè)長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學(xué)生中“綜合素質(zhì)”評價(jià)結(jié)果為“A”的學(xué)生約為_____人.13.如圖,在△ABC中,AB=AC=15,點(diǎn)D是BC邊上的一動(dòng)點(diǎn)(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點(diǎn)E,且tan∠α=34,有以下的結(jié)論:①△ADE∽△ACD;②當(dāng)CD=9時(shí),△ACD與△DBE全等;③△BDE為直角三角形時(shí),BD為12或214;④0<BE≤14.計(jì)算a10÷a5=_______.15.如圖(1),將一個(gè)正六邊形各邊延長,構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.16.關(guān)于x的分式方程有增根,則m的值為__________.三、解答題(共8題,共72分)17.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點(diǎn),以BD為直徑作⊙M,⊙M交AB于點(diǎn)Q.當(dāng)⊙M與y軸相切時(shí),sin∠BOQ=;(3)如圖2,動(dòng)點(diǎn)P以每秒1個(gè)單位長度的速度,從點(diǎn)O沿線段OA向點(diǎn)A運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)D以相同的速度,從點(diǎn)B沿折線B﹣C﹣O向點(diǎn)O運(yùn)動(dòng).當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)P作直線PE∥OC,與折線O﹣B﹣A交于點(diǎn)E.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(秒).求當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo).18.(8分)用你發(fā)現(xiàn)的規(guī)律解答下列問題.┅┅計(jì)算.探究.(用含有的式子表示)若的值為,求的值.19.(8分)某中學(xué)為了了解在校學(xué)生對校本課程的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生對五類校本課程的喜愛情況,要求每位學(xué)生只能選擇一類最喜歡的校本課程,根據(jù)調(diào)查結(jié)果繪制了如下的兩個(gè)不完整統(tǒng)計(jì)圖.請根據(jù)圖中所提供的信息,完成下列問題:(1)本次被調(diào)查的學(xué)生的人數(shù)為;(2)補(bǔ)全條形統(tǒng)計(jì)圖(3)扇形統(tǒng)計(jì)圖中,類所在扇形的圓心角的度數(shù)為;(4)若該中學(xué)有2000名學(xué)生,請估計(jì)該校最喜愛兩類校本課程的學(xué)生約共有多少名.20.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點(diǎn)M,交AB于點(diǎn)N,連接BM.求m的值和反比例函數(shù)的表達(dá)式;直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?21.(8分)(1)解方程組(2)若點(diǎn)是平面直角坐標(biāo)系中坐標(biāo)軸上的點(diǎn),(1)中的解分別為點(diǎn)的橫、縱坐標(biāo),求的最小值及取得最小值時(shí)點(diǎn)的坐標(biāo).22.(10分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣3x+b與拋物線的另一個(gè)交點(diǎn)為D.(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒2323.(12分)為落實(shí)“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.(1)直接寫出甲投放的垃圾恰好是A類的概率;(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.24.已知:如圖所示,在中,,,求和的度數(shù).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)二次函數(shù)的圖象找出a、b、c的正負(fù),再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.【詳解】解:觀察二次函數(shù)圖象可知:開口向上,a>1;對稱軸大于1,>1,b<1;二次函數(shù)圖象與y軸交點(diǎn)在y軸的正半軸,c>1.∵反比例函數(shù)中k=﹣a<1,∴反比例函數(shù)圖象在第二、四象限內(nèi);∵一次函數(shù)y=bx﹣c中,b<1,﹣c<1,∴一次函數(shù)圖象經(jīng)過第二、三、四象限.故選C.【點(diǎn)睛】本題考查了二次函數(shù)的圖象、反比例函數(shù)的圖象以及一次函數(shù)的圖象,解題的關(guān)鍵是根據(jù)二次函數(shù)的圖象找出a、b、c的正負(fù).本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)二次函數(shù)圖象找出a、b、c的正負(fù),再結(jié)合反比例函數(shù)、一次函數(shù)系數(shù)與圖象的關(guān)系即可得出結(jié)論.2、D【解析】
先利用勾股定理計(jì)算出OP=1,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法得到r的范圍.【詳解】∵點(diǎn)P的坐標(biāo)為(3,4),∴OP1.∵點(diǎn)P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)的位置可以確定該點(diǎn)到圓心距離與半徑的關(guān)系,反過來已知點(diǎn)到圓心距離與半徑的關(guān)系可以確定該點(diǎn)與圓的位置關(guān)系.3、C【解析】【分析】根據(jù)合并同類項(xiàng)法則進(jìn)行計(jì)算即可得.【詳解】3a2-a2=(3-1)a2=2a2,故選C.【點(diǎn)睛】本題考查了合并同類項(xiàng),熟記合并同類項(xiàng)的法則是解題的關(guān)鍵.合并同類項(xiàng)就是把同類項(xiàng)的系數(shù)相加減,字母和字母的指數(shù)不變.4、D【解析】
本題關(guān)鍵是正確分析出所剪時(shí)的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時(shí),虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項(xiàng).【點(diǎn)睛】本題考查了平面圖形在實(shí)際生活中的應(yīng)用,有良好的空間想象能力過動(dòng)手能力是解題關(guān)鍵.5、B【解析】
根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.【點(diǎn)睛】本題考查了有理數(shù)的認(rèn)識,關(guān)鍵是根據(jù)最小的正整數(shù)是1解答.6、A【解析】
根據(jù)垂徑定理、頻率估計(jì)概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結(jié)論錯(cuò)誤;②在n次隨機(jī)實(shí)驗(yàn)中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,試驗(yàn)次數(shù)足夠大時(shí)可近似地看做事件A的概率,故此結(jié)論錯(cuò)誤;③各角相等的圓外切多邊形是正多邊形,此結(jié)論正確;④各角相等的圓內(nèi)接多邊形不一定是正多邊形,如圓內(nèi)接矩形,各角相等,但不是正多邊形,故此結(jié)論錯(cuò)誤;⑤若一個(gè)事件可能發(fā)生的結(jié)果共有n種,再每種結(jié)果發(fā)生的可能性相同是,每一種結(jié)果發(fā)生的可能性是.故此結(jié)論錯(cuò)誤;故選:A.【點(diǎn)睛】本題主要考查命題的真假,解題的關(guān)鍵是掌握垂徑定理、頻率估計(jì)概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義.7、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進(jìn)而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個(gè)圓錐的高為:(cm).故選B.點(diǎn)睛:此題主要考查了圓錐的計(jì)算,正確得出圓錐的半徑是解題關(guān)鍵.8、D【解析】
A、由a=1>0,可得出拋物線開口向上,A選項(xiàng)錯(cuò)誤;B、由拋物線與y軸的交點(diǎn)坐標(biāo)可得出c值,進(jìn)而可得出拋物線的解析式,令y=0求出x值,由此可得出拋物線與x軸的交點(diǎn)為(1,0)、(1,0),B選項(xiàng)錯(cuò)誤;C、由拋物線開口向上,可得出y無最大值,C選項(xiàng)錯(cuò)誤;D、由拋物線的解析式利用二次函數(shù)的性質(zhì),即可求出拋物線的對稱軸為直線x=-,D選項(xiàng)正確.綜上即可得出結(jié)論.【詳解】解:A、∵a=1>0,∴拋物線開口向上,A選項(xiàng)錯(cuò)誤;B、∵拋物線y=x1-3x+c與y軸的交點(diǎn)為(0,1),∴c=1,∴拋物線的解析式為y=x1-3x+1.當(dāng)y=0時(shí),有x1-3x+1=0,解得:x1=1,x1=1,∴拋物線與x軸的交點(diǎn)為(1,0)、(1,0),B選項(xiàng)錯(cuò)誤;C、∵拋物線開口向上,∴y無最大值,C選項(xiàng)錯(cuò)誤;D、∵拋物線的解析式為y=x1-3x+1,∴拋物線的對稱軸為直線x=-=-=,D選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì)、二次函數(shù)的最值以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用二次函數(shù)的性質(zhì)及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征逐一分析四個(gè)選項(xiàng)的正誤是解題的關(guān)鍵.9、C【解析】
過B作直徑,連接AC交AO于E,如圖①,根據(jù)已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據(jù)勾股定理得到結(jié)論.【詳解】過B作直徑,連接AC交AO于E,∵點(diǎn)B為的中點(diǎn),∴BD⊥AC,如圖①,∵點(diǎn)D恰在該圓直徑上,D為OB的中點(diǎn),∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點(diǎn)睛】本題考查了圓心角,弧,弦的關(guān)系,勾股定理,菱形的性質(zhì),正確的作出圖形是解題的關(guān)鍵.10、D【解析】
根據(jù)任意兩個(gè)實(shí)數(shù)都可以比較大小.正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,理解任意兩個(gè)實(shí)數(shù)都可以比較大?。龑?shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個(gè)負(fù)實(shí)數(shù)絕對值大的反而小是關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】解:它的側(cè)面展開圖的面積=?1π?4×6=14π(cm1).故答案為14πcm1.點(diǎn)睛:本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.12、16000【解析】
用畢業(yè)生總?cè)藬?shù)乘以“綜合素質(zhì)”等級為A的學(xué)生所占的比即可求得結(jié)果.【詳解】∵A,B,C,D,E五個(gè)等級在統(tǒng)計(jì)圖中的高之比為2:3:3:1:1,∴該市80000名九年級學(xué)生中“綜合素質(zhì)”評價(jià)結(jié)果為“A”的學(xué)生約為80000×=16000,故答案為16000.【點(diǎn)睛】本題考查了條形統(tǒng)計(jì)圖的應(yīng)用,讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).13、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯(cuò)誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當(dāng)∠BED=90°時(shí),由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當(dāng)∠BDE=90°時(shí),易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當(dāng)△DCE為直角三角形時(shí),BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設(shè)CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯(cuò)誤.故正確的結(jié)論為:②③.考點(diǎn):1.相似三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).14、a1.【解析】試題分析:根據(jù)同底數(shù)冪的除法底數(shù)不變指數(shù)相減,可得答案.原式=a10-1=a1,故答案為a1.考點(diǎn):同底數(shù)冪的除法.15、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.16、1.【解析】去分母得:7x+5(x-1)=2m-1,因?yàn)榉质椒匠逃性龈?,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案為1.三、解答題(共8題,共72分)17、(4)4;(2);(4)點(diǎn)E的坐標(biāo)為(4,2)、(,)、(4,2).【解析】分析:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運(yùn)用三角函數(shù)求出BH即可.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運(yùn)用勾股定理可求出r=2,從而得到點(diǎn)D與點(diǎn)H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進(jìn)而可求出BR.在Rt△ORB中運(yùn)用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運(yùn)用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點(diǎn)B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點(diǎn)B作BH⊥OA于H,過點(diǎn)G作GF⊥OA于F,過點(diǎn)B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點(diǎn)D與點(diǎn)H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當(dāng)∠BDE=90°時(shí),點(diǎn)D在直線PE上,如圖2.此時(shí)DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點(diǎn)E的坐標(biāo)為(4,2).②當(dāng)∠BED=90°時(shí),如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點(diǎn)E的坐標(biāo)為().③當(dāng)∠DBE=90°時(shí),如圖4.此時(shí)PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點(diǎn)E的坐標(biāo)為(4,2).綜上所述:當(dāng)以B、D、E為頂點(diǎn)的三角形是直角三角形時(shí)點(diǎn)E的坐標(biāo)為(4,2)、()、(4,2).點(diǎn)睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識,還考查了分類討論的數(shù)學(xué)思想,有一定的綜合性.18、解:(1);(2);(3)n=17.【解析】
(1)、根據(jù)給出的式子將各式進(jìn)行拆開,然后得出答案;(2)、根據(jù)給出的式子得出規(guī)律,然后根據(jù)規(guī)律進(jìn)行計(jì)算;(3)、根據(jù)題意將式子進(jìn)行展開,然后列出關(guān)于n的一元一次方程,從而得出n的值.【詳解】(1)原式=1?+?+?+?+?=1?=.故答案為;(2)原式=1?+?+?+…+?=1?=故答案為;(3)+++…+=(1?+?+?+…+?)=(1?)==解得:n=17.考點(diǎn):規(guī)律題.19、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據(jù)A種類人數(shù)及其占總?cè)藬?shù)百分比可得答案;
(2)用總?cè)藬?shù)乘以B的百分比得出其人數(shù),即可補(bǔ)全條形圖;
(3)用360°乘以C類人數(shù)占總?cè)藬?shù)的比例可得;
(4)總?cè)藬?shù)乘以C、D兩類人數(shù)占樣本的比例可得答案.【詳解】解:(1)本次被調(diào)查的學(xué)生的人數(shù)為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數(shù)為300×20%=60(人),
補(bǔ)全條形圖如下:
(3)扇形統(tǒng)計(jì)圖中,C類所在扇形的圓心角的度數(shù)為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計(jì)該校喜愛C,D兩類校本課程的學(xué)生共有840名.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從統(tǒng)計(jì)圖中得到必要的信息是解題關(guān)鍵.條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的數(shù)據(jù).20、(1)m=8,反比例函數(shù)的表達(dá)式為y=;(2)當(dāng)n=3時(shí),△BMN的面積最大.【解析】
(1)求出點(diǎn)A的坐標(biāo),利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點(diǎn)A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點(diǎn)A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點(diǎn)M,N的坐標(biāo)為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時(shí),△BMN的面積最大.21、(1);(2)當(dāng)坐標(biāo)為時(shí),取得最小值為.【解析】
(1)用加減消元法解二元一次方程組;(2)利用(1)確定出B的坐標(biāo),進(jìn)而得到AB取得最小值時(shí)A的坐標(biāo),以及AB的最小值.【詳解】解:(1)①②得:解得:把代入②得,則方程組的解為(2)由題意得:,當(dāng)坐標(biāo)為時(shí),取得最小值為.【點(diǎn)睛】此題考查了二元一次方程組的解,以及坐標(biāo)與圖形性質(zhì),熟練掌握運(yùn)算法則及數(shù)形結(jié)合思想解題是解本題的關(guān)鍵.22、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解析】試題分析:(1)根據(jù)二次函數(shù)的交點(diǎn)式確定點(diǎn)A、B的坐標(biāo),求出直線的解析式,求出點(diǎn)D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024廣告發(fā)布合同范文
- 公共場所環(huán)境衛(wèi)生承包合同
- 北京交通事故損害賠償協(xié)議書撰寫指南
- 2024年交通事故調(diào)解協(xié)議書范例
- 2024清潔工勞動(dòng)合同書樣本
- 商品采購協(xié)議
- 2024工程建設(shè)招標(biāo)投標(biāo)合同(履約銀行保證書)新
- 舞蹈學(xué)校教師聘請協(xié)議書
- 2024《技術(shù)服務(wù)合同范本》
- 2024共事協(xié)議書樣式
- 曲靖市數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)餐廚垃圾資源化再利用項(xiàng)目(重新報(bào)批)環(huán)評報(bào)告
- 小學(xué)語文跨學(xué)科學(xué)習(xí)任務(wù)群學(xué)習(xí)任務(wù)設(shè)計(jì)策略
- 編施工方案的目的
- 亮化工程安全施工方案
- 廣西南寧市西鄉(xiāng)塘區(qū)2023-2024學(xué)年四年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含答案
- ul2464電線線徑標(biāo)準(zhǔn)
- 《鄉(xiāng)土中國》整本書閱讀公開課
- 氣排球比賽規(guī)則課件
- NB/T 11123-2023煤礦安全雙重預(yù)防機(jī)制規(guī)范
- 人美版小學(xué)美術(shù)六年級上冊1建筑藝術(shù)的美課件
- 氧氣瓶安全操作技術(shù)規(guī)程
評論
0/150
提交評論