2022-2023學年山東省萊西市數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第1頁
2022-2023學年山東省萊西市數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第2頁
2022-2023學年山東省萊西市數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第3頁
2022-2023學年山東省萊西市數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第4頁
2022-2023學年山東省萊西市數(shù)學九年級第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,拋物線y=ax2+bx+c(a>0)的對稱軸是直線x=1,且經(jīng)過點P(3,0),則a-b+c的值為(

)A.0

B.-1

C.1

D.22.如圖,在正方形網(wǎng)格上,與△ABC相似的三角形是()A.△AFD B.△FED C.△AED D.不能確定3.某超市一月份的營業(yè)額為36萬元,三月份的營業(yè)額為48萬元,設(shè)每月的平均增長率為x,則可列方程為()A.48(1﹣x)2=36 B.48(1+x)2=36 C.36(1﹣x)2=48 D.36(1+x)2=484.下列實數(shù):,其中最大的實數(shù)是()A.-2020 B. C. D.5.要將拋物線平移后得到拋物線,下列平移方法正確的是()A.向左平移1個單位,再向上平移2個單位 B.向左平移1個單位,再向下平移2個單位C.向右平移1個單位,再向上平移2個單位 D.向右平移1個單位,再向下平移2個單位6.半徑為10的⊙O和直線l上一點A,且OA=10,則直線l與⊙O的位置關(guān)系是()A.相切 B.相交 C.相離 D.相切或相交7.如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結(jié)論:①AE⊥BF;②AE=BF;③BG=GE;④S四邊形CEGF=S△ABG,其中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個8.去年某果園隨機從甲、乙、丙、丁四個品種的葡萄樹中各采摘了10棵,每棵產(chǎn)量的平均數(shù)(單位:千克)及方差(單位:千克)如下表所示:甲乙丙丁242423202.11.921.9今年準備從四個品種中選出一種產(chǎn)量既高又穩(wěn)定的葡萄樹進行種植,應(yīng)選的品種是(

)A.甲 B.乙 C.丙 D.丁9.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件10.下列說法中錯誤的是()A.籃球隊員在罰球線上投籃一次,未投中是隨機事件B.“任意畫出一個平行四邊形,它是中心對稱圖形”是必然事件C.“拋一枚硬幣,正面向上的概率為”表示每拋兩次就有一次正面朝上D.“拋一枚均勻的正方體骰子,朝上的點數(shù)是6的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是6”這一事件發(fā)生的頻率穩(wěn)定在附近11.有人預(yù)測2020年東京奧運會上中國女排奪冠的概率是80%,對這個說法正確的理解應(yīng)該是().A.中國女排一定會奪冠 B.中國女排一定不會奪冠C.中國女排奪冠的可能性比較大 D.中國女排奪冠的可能性比較小12.如圖,已知:在⊙O中,OA⊥BC,∠AOB=70°,則∠ADC的度數(shù)為()A.70° B.45° C.35° D.30°二、填空題(每題4分,共24分)13.如圖,二次函數(shù)y=ax2+bx+c的圖像過點A(3,0),對稱軸為直線x=1,則方程ax2+bx+c=0的根為____.14.一圓錐的母線長為5,底面半徑為3,則該圓錐的側(cè)面積為________.15.經(jīng)過某十字路口的汽車,它可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),假設(shè)這三種可能性大小相同,那么兩輛汽車經(jīng)過這個十字路口,一輛向左轉(zhuǎn),一輛向右轉(zhuǎn)的概率是_____.16.已知點A(4,3),AB∥y軸,且AB=3,則B點的坐標為_____.17.已知⊙O的半徑為,圓心O到直線L的距離為,則直線L與⊙O的位置關(guān)系是___________.18.150°的圓心角所對的弧長是5πcm,則此弧所在圓的半徑是______cm.三、解答題(共78分)19.(8分)已知拋物線y=x2+bx﹣3經(jīng)過點A(1,0),頂點為點M.(1)求拋物線的表達式及頂點M的坐標;(2)求∠OAM的正弦值.20.(8分)(1)某學校“智慧方園”數(shù)學社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.(2)請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.21.(8分)如圖,在中,,,垂足為,為上一點,連接,作交于.(1)求證:.(2)除(1)中相似三角形,圖中還有其他相似三角形嗎?如果有,請把它們都寫出來.(證明不做要求)22.(10分)為了維護國家主權(quán)和海洋權(quán)利,海監(jiān)部門對我國領(lǐng)海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.(1)求∠APB的度數(shù);(2)已知在燈塔P的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?.23.(10分)如圖,在中,,在,上取一點,以為直徑作,與相交于點,作線段的垂直平分線交于點,連接.(1)求證:是的切線;(2)若,的半徑為.求線段與線段的長.24.(10分)為了滿足師生的閱讀需求,某校圖書館的藏書從2016年底到2018年底兩年內(nèi)由5萬冊增加到7.2萬冊.(1)求這兩年藏書的年均增長率;(2)經(jīng)統(tǒng)計知:中外古典名著的冊數(shù)在2016年底僅占當時藏書總量的5.6%,在這兩年新增加的圖書中,中外古典名著所占的百分率恰好等于這兩年藏書的年均增長率,那么到2018年底中外古典名著的冊數(shù)占藏書總量的百分之幾?25.(12分)已知,如圖,點A、D、B、E在同一直線上,AC=EF,AD=BE,∠A=∠E,(1)求證:△ABC≌△EDF;(2)當∠CHD=120°,求∠HBD的度數(shù).26.已知關(guān)于的方程(1)求證:無論為何值,方程總有實數(shù)根.(2)設(shè),是方程的兩個根,記,S的值能為2嗎?若能,求出此時的值;若不能,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:因為對稱軸x=1且經(jīng)過點P(3,1)所以拋物線與x軸的另一個交點是(-1,1)代入拋物線解析式y(tǒng)=ax2+bx+c中,得a-b+c=1.故選A.考點:二次函數(shù)的圖象.2、A【分析】根據(jù)題意直接利用三角形三邊長度,得出其比值,進而分析即可求出相似三角形.【詳解】解:∵AF=4,DF=4,AD=4,AB=2,BC=2,AC=2,∴,∴△AFD∽△ABC.故選:A.【點睛】本題主要考查相似三角形的判定以及勾股定理,由勾股定理得出三角形各邊長是解題的關(guān)鍵.3、D【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設(shè)教育經(jīng)費的年平均增長率為x,然后根據(jù)已知條件可得出方程.【詳解】∵某超市一月份的營業(yè)額為36萬元,每月的平均增長率為x,∴二月份的營業(yè)額為36(1+x),三月份的營業(yè)額為36(1+x)×(1+x)=36(1+x)2.∴根據(jù)三月份的營業(yè)額為48萬元,可列方程為36(1+x)2=48.故選D.【點睛】本題考查了一元二次方程的應(yīng)用,找到關(guān)鍵描述語,就能找到等量關(guān)系,是解決問題的關(guān)鍵.同時要注意增長率問題的一般規(guī)律.4、C【解析】根據(jù)正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù),比較即可;【詳解】∵=-2020,=-2020,=2020,=,∴,故選C.【點睛】本題主要考查了實數(shù)大小比較,掌握實數(shù)大小比較是解題的關(guān)鍵.5、A【分析】原拋物線頂點坐標為(0,0),平移后拋物線頂點坐標為(-1,2),由此確定平移辦法.【詳解】y=x2+2x+3=(x+1)2+2,該拋物線的頂點坐標是(-1,2),拋物線y=x2的頂點坐標是(0,0),

則平移的方法可以是:將拋物線y=x2向左平移1個單位長度,再向上平移2個單位長度.

故選:A.【點睛】此題考查二次函數(shù)圖象與幾何變換.解題關(guān)鍵是將拋物線的平移問題轉(zhuǎn)化為頂點的平移,尋找平移方法.6、D【分析】根據(jù)直線和圓的位置關(guān)系來判斷.【詳解】設(shè)圓心到直線l的距離為d,則d≤10,當d=10時,d=r,直線與圓相切;當r<10時,d<r,直線與圓相交,所以直線與圓相切或相交.故選D點睛:本題考查了直線與圓的位置關(guān)系,①直線和圓相離時,d>r;②直線和圓相交時,d<r;③直線和圓相切時,d=r(d為圓心到直線的距離),反之也成立.7、C【分析】根據(jù)正方形的性質(zhì)證明△ABE≌△BCF,可證得①AE⊥BF;

②AE=BF正確;證明△BGE∽△ABE,可得==,故③不正確;由S△ABE=S△BFC可得S四邊形CEGF=S△ABG,故④正確.【詳解】解:在正方形ABCD中,AB=BC,∠ABE=∠C=90,

又∵BE=CF,

∴△ABE≌△BCF(SAS),

∴AE=BF,∠BAE=∠CBF,

∴∠FBC+∠BEG=∠BAE+∠BEG=90°,

∴∠BGE=90°,

∴AE⊥BF,故①,②正確;

∵CF=2FD,BE=CF,AB=CD,

∴=,

∵∠EBG+∠ABG=∠ABG+∠BAG=90°,

∴∠EBG=∠BAE,

∵∠EGB=∠ABE=90°,

∴△BGE∽△ABE,

∴==,即BG=GE,故③不正確,

∵△ABE≌△BCF,

∴S△ABE=S△BFC,

∴S△ABE?S△BEG=S△BFC?S△BEG,

∴S四邊形CEGF=S△ABG,故④正確.

故選:C.【點睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識點,解決問題的關(guān)鍵是熟練掌握正方形的性質(zhì).8、B【分析】先比較平均數(shù)得到甲組和乙組產(chǎn)量較好,然后比較方差得到乙組的狀態(tài)穩(wěn)定.【詳解】因為甲組、乙組的平均數(shù)丙組比丁組大,而乙組的方差比甲組的小,所以乙組的產(chǎn)量比較穩(wěn)定,所以乙組的產(chǎn)量既高又穩(wěn)定,故選B.【點睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了平均數(shù)的意義.9、C【分析】直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.10、C【分析】根據(jù)隨機事件的定義可判斷A項,根據(jù)中心對稱圖形和必然事件的定義可判斷B項,根據(jù)概率的定義可判斷C項,根據(jù)頻率與概率的關(guān)系可判斷D項,進而可得答案.【詳解】解:A、籃球隊員在罰球線上投籃一次,未投中是隨機事件,故本選項說法正確,不符合題意;B、“任意畫出一個平行四邊形,它是中心對稱圖形”是必然事件,故本選項說法正確,不符合題意;C、“拋一枚硬幣,正面向上的概率為”表示每拋兩次就有一次正面朝上,故本選項說法錯誤,符合題意;D、“拋一枚均勻的正方體骰子,朝上的點數(shù)是6的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是6”這一事件發(fā)生的頻率穩(wěn)定在附近,故本選項說法正確,不符合題意;故選:C.【點睛】本題考查了隨機事件、必然事件、中心對稱圖形以及頻率與概率的關(guān)系等知識,熟練掌握上述知識是解題的關(guān)鍵.11、C【分析】概率越接近1,事件發(fā)生的可能性越大,概率越接近0,則事件發(fā)生的可能性越小,根據(jù)概率的意義即可得出答案.【詳解】∵中國女排奪冠的概率是80%,∴中國女排奪冠的可能性比較大故選C.【點睛】本題考查隨機事件發(fā)生的可能性,解題的關(guān)鍵是掌握概率的意義.12、C【分析】先根據(jù)垂徑定理得出=,再由圓周角定理即可得出結(jié)論.【詳解】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故選C.【點睛】本題考查的是圓周角定理,熟知在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)點A的坐標及拋物線的對稱軸可得拋物線與x軸的兩個交點坐標,從而求得方程的解.【詳解】解:由二次函數(shù)y=ax2+bx+c的圖像過點A(3,0),對稱軸為直線x=1可得:拋物線與x軸交于(3,0)和(-1,0)即當y=0時,x=3或-1∴ax2+bx+c=0的根為故答案為:【點睛】本題考查拋物線的對稱性及二次函數(shù)與一元二次方程,利用對稱性求出拋物線與x軸的交點坐標是本題的解題關(guān)鍵.14、15π【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算.【詳解】圓錐的側(cè)面積=?2π?3?5=15π.

故答案是:15π.【點睛】考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.15、【分析】列舉出所有情況,讓一輛向左轉(zhuǎn),一輛向右轉(zhuǎn)的情況數(shù)除以總情況數(shù)即為所求的可能性.【詳解】一輛向左轉(zhuǎn),一輛向右轉(zhuǎn)的情況有兩種,則概率是.【點睛】本題考查了列表法與樹狀圖法,用到的知識點為:可能性=所求情況數(shù)與總情況數(shù)之比.16、(4,6)或(4,0)【解析】試題分析:由AB∥y軸和點A的坐標可得點B的橫坐標與點A的橫坐標相同,根據(jù)AB的距離可得點B的縱坐標可能的情況試題解析:∵A(4,3),AB∥y軸,∴點B的橫坐標為4,∵AB=3,∴點B的縱坐標為3+3=6或3-3=0,∴B點的坐標為(4,0)或(4,6).考點:點的坐標.17、相交【分析】先根據(jù)題意判斷出直線與圓的位置關(guān)系即可得出結(jié)論.【詳解】∵⊙O的半徑為6cm,圓心O到直線l的距離為5cm,6cm>5cm,∴直線l與⊙O相交,故答案為:相交.【點睛】本題考查的是直線與圓的位置關(guān)系,熟知設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,當d<r時,直線與圓相交是解答此題的關(guān)鍵.18、1;【解析】解:設(shè)圓的半徑為x,由題意得:=5π,解得:x=1,故答案為1.點睛:此題主要考查了弧長計算,關(guān)鍵是掌握弧長公式l=(弧長為l,圓心角度數(shù)為n,圓的半徑為R).三、解答題(共78分)19、(1)M的坐標為(﹣1,﹣4);(2)25【解析】(1)把A坐標代入拋物線解析式求出b的值,確定出拋物線表達式,并求出頂點坐標即可;(2)根據(jù)(1)確定出拋物線對稱軸,求出拋物線與x軸的交點B坐標,根據(jù)題意得到三角形AMB為直角三角形,由MB與AB的長,利用勾股定理求出AM的長,再利用銳角三角函數(shù)定義求出所求即可.【詳解】解:(1)由題意,得1+b﹣3=0,解這個方程,得,b=2,所以,這個拋物線的表達式是y=x2+2x﹣3,所以y=(x+1)2﹣4,則頂點M的坐標為(﹣1,﹣4);(2)由(1)得:這個拋物線的對稱軸是直線x=﹣1,設(shè)直線x=-1與x軸的交點為點B,則點B的坐標為(﹣1,0),且∠MBA=90°,在Rt△ABM中,MB=4,AB=2,由勾股定理得:AM2=MB2+AB2=16+4=20,即AM=25,所以sin∠OAM=BMAM=2【點睛】此題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,以及解直角三角形,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.20、(1)75;4;(2)CD=4.【分析】(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【點睛】本題考查了相似三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及平行線的性質(zhì),解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)求出OD的值;(2)利用勾股定理求出BE、CD的長度.21、(1)證明見解析;(2)有,見解析.【分析】(1)通過線段垂直和三角形內(nèi)角之和為180°求出和,從而證明.(2)通過兩內(nèi)角相等寫出所有相似三角形即可.【詳解】(1)∵∴,∴又∵,∴,又∵∴,又∵,∴,∴,∴(2)∵,∴;∴,∴,同理得,∴,即,【點睛】本題考查了相似三角形的性質(zhì)以及證明,掌握相似三角形的判定定理是解題的關(guān)鍵.22、(1)30°;(2)海監(jiān)船繼續(xù)向正東方向航行是安全的.【分析】(1)根據(jù)直角的性質(zhì)和三角形的內(nèi)角和求解;(2)過點P作PH⊥AB于點H,根據(jù)解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區(qū),繼續(xù)航行仍然安全.考點:解直角三角形23、(1)見解析;(2)【分析】(1)根據(jù)題意,證出EN與OE垂直即可;(2)求線段的長一般構(gòu)造直角三角形,利用勾股定理來求解.在Rt△OEN、Rt△OCN△中,EN2=ON2-OE2,ON2=OC2+CN2,CN=4-EN代入可求EN;同理構(gòu)造直角三角形Rt△AED、Rt△EDB、Rt△DCB,AE2=AD2-DE2,DE2=DB2-BE2,DB2=CD2+CB2=12+42=17,代入求AE.【詳解】證明:連接是的垂直平分線即是半徑是圓的切線解:連接設(shè)長為,則,圓的半徑為解得,所以連接設(shè)∴AB=5,∵AD是直徑,∴△ADE是直角三角形則為直徑,∴△DEB是直角三角形,即(22-y2)+(5-y)2=17解得【點睛】本題考查了切線的判定,勾股定理的運用,在運用勾股定理時需要構(gòu)造與所求線段有關(guān)的直角三角形,問題關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論