版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省鹽城市東臺市第二聯(lián)盟2025屆數(shù)學九上期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.關(guān)于反比例函數(shù),下列說法正確的是()A.函數(shù)圖像經(jīng)過點(2,2); B.函數(shù)圖像位于第一、三象限;C.當時,函數(shù)值隨著的增大而增大; D.當時,.2.下面四組線段中不能成比例線段的是()A.、、、 B.、、、 C.、、、 D.、、、3.將拋物線y=(x﹣2)2﹣8向左平移3個單位,再向上平移5個單位,得到拋物線的表達式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣34.如圖,是一個幾何體的三視圖,根據(jù)圖中標注的數(shù)據(jù)可求得這個幾何體的體積為(
)A.12π B.24π C.36π D.48π5.下列幾何圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等腰三角形 B.正三角形 C.平行四邊形 D.正方形6.如圖,將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△A'OB',若∠AOB=15°,則∠AOB'的度數(shù)是()A.25° B.30° C.35° D.40°7.如圖,將繞點A按順時針方向旋轉(zhuǎn)一定角度得到,點B的對應點D恰好落在邊上.若,則的長為()A.0.5 B.1.5 C. D.18.“三等分角”大約是在公元前五世紀由古希臘人提出來的.借助如圖所示的“三等分角儀”能三等分任一角.這個三等分角儀由兩根有槽的棒,組成,兩根棒在點相連并可繞轉(zhuǎn)動,點固定,,點,可在槽中滑動,若,則的度數(shù)是()A.60° B.65° C.75° D.80°9.下列方程中,滿足兩個實數(shù)根的和等于3的方程是()A.2x2+6x﹣5=0 B.2x2﹣3x﹣5=0 C.2x2﹣6x+5=0 D.2x2﹣6x﹣5=010.如圖,拋物線與軸交于點,其對稱軸為直線,結(jié)合圖象分析下列結(jié)論:①;②;③當時,隨的增大而增大;④一元二次方程的兩根分別為,;⑤;⑥若,為方程的兩個根,則且,其中正確的結(jié)論有()A.個 B.個 C.個 D.個11.下列說法正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是不公平的C.“367人中至少有2人生日相同”是必然事件D.四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是.12.如圖,要測量小河兩岸相對兩點、寬度,可以在小河邊的垂線上取一點,則得,,則小河的寬等于()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,圓形紙片⊙O半徑為5,先在其內(nèi)剪出一個最大正方形,再在剩余部分剪出4個最大的小正方形,則4個小正方形的面積和為_______.14.若兩個相似三角形的面積比是9:25,則對應邊上的中線的比為_________.15.從0,1,2,3,4中任取兩個不同的數(shù),其乘積為0的概率是___________.16.如圖,在平面直角坐標系中,正方形OABC與正方形ODEF是位似圖形,點O為位似中心,位似比為2:3,點B、E在第一象限,若點A的坐標為(4,0),則點E的坐標是_____.17.如果兩個相似三角形的對應邊的比是4:5,那么這兩個三角形的面積比是_____.18.如圖,已知AD∥BC,AC和BD相交于點O,若△AOD的面積為2,△BOC的面積為18,BC=6,則AD的長為_____.三、解答題(共78分)19.(8分)綜合與實踐問題情境數(shù)學課上,李老師提出了這樣一個問題:如圖1,點是正方形內(nèi)一點,,,.你能求出的度數(shù)嗎?(1)小敏與同桌小聰通過觀察、思考、討論后,得出了如下思路:思路一:將繞點逆時針旋轉(zhuǎn),得到,連接,求出的度數(shù).思路二:將繞點順時針旋轉(zhuǎn),得到,連接,求出的度數(shù).請參考以上思路,任選一種寫出完整的解答過程.類比探究(2)如圖2,若點是正方形外一點,,,,求的度數(shù).拓展應用(3)如圖3,在邊長為的等邊三角形內(nèi)有一點,,,則的面積是______.20.(8分)如圖,一個圓形水池的中央垂直于水面安裝了一個柱形噴水裝置OA,頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.建立如圖所示的直角坐標系,水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式可以用表示,且拋物線經(jīng)過點B,C;(1)求拋物線的函數(shù)關(guān)系式,并確定噴水裝置OA的高度;(2)噴出的水流距水面的最大高度是多少米?(3)若不計其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?21.(8分)如圖,在中,點在邊上,.點在邊上,.(1)求證:;(2)若,求的長.22.(10分)已知,,,(如圖),點,分別為射線上的動點(點C、E都不與點B重合),連接AC、AE使得,射線交射線于點,設,.(1)如圖1,當時,求AF的長.(2)當點在點的右側(cè)時,求關(guān)于的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.(3)連接交于點,若是等腰三角形,直接寫出的值.23.(10分)如圖,,D、E分別是半徑OA和OB的中點,求證:CD=CE.24.(10分)在Rt△ABC中,∠ACB=90°,AC=1,記∠ABC=α,點D為射線BC上的動點,連接AD,將射線DA繞點D順時針旋轉(zhuǎn)α角后得到射線DE,過點A作AD的垂線,與射線DE交于點P,點B關(guān)于點D的對稱點為Q,連接PQ.(1)當△ABD為等邊三角形時,①依題意補全圖1;②PQ的長為;(2)如圖2,當α=45°,且BD=時,求證:PD=PQ;(3)設BC=t,當PD=PQ時,直接寫出BD的長.(用含t的代數(shù)式表示)25.(12分)如圖,已知反比例函數(shù)的圖像與一次函數(shù)的圖像交于A(-1,),B在(,-3)兩點.(1)求的值;(2)直接寫出使一次函數(shù)值大于反比例函數(shù)值時x的取值范圍.26.如圖,在Rt△ABC中,∠ACB=90°,以斜邊AB上一點O為圓心,OB為半徑作⊙O,交AC于點E,交AB于點D,且∠BEC=∠BDE.(1)求證:AC是⊙O的切線;(2)連接OC交BE于點F,若,求的值.
參考答案一、選擇題(每題4分,共48分)1、C【解析】直接利用反比例函數(shù)的性質(zhì)分別分析得出答案.【詳解】A、關(guān)于反比例函數(shù)y=-,函數(shù)圖象經(jīng)過點(2,-2),故此選項錯誤;B、關(guān)于反比例函數(shù)y=-,函數(shù)圖象位于第二、四象限,故此選項錯誤;C、關(guān)于反比例函數(shù)y=-,當x>0時,函數(shù)值y隨著x的增大而增大,故此選項正確;D、關(guān)于反比例函數(shù)y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),正確掌握相關(guān)函數(shù)的性質(zhì)是解題關(guān)鍵.2、B【分析】根據(jù)成比例線段的概念,對選項進行一一分析,即可得出答案.【詳解】A.2×6=3×4,能成比例;B.4×10≠5×6,不能成比例;C.1×=×,能成比例;D.2×=×,能成比例.故選B.【點睛】本題考查了成比例線段的概念.在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段.3、D【分析】根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】解:由“左加右減”的原則可知,將拋物線y=(x-2)2-8向左平移1個單位所得直線的解析式為:y=(x+1)2-8;
由“上加下減”的原則可知,將拋物線y=(x-5)2-8向上平移5個單位所得拋物線的解析式為:y=(x+1)2-1.
故選:D.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.4、B【解析】根據(jù)三視圖:俯視圖是圓,主視圖與左視圖是長方形可以確定該幾何體是圓柱體,再利用已知數(shù)據(jù)計算圓柱體的體積.【詳解】先由三視圖確定該幾何體是圓柱體,底面直徑是4,半徑是2,高是1.所以該幾何體的體積為π×22×1=24π.故選B.【點睛】本題主要考查由三視圖確定幾何體和求圓柱體的面積,考查學生的空間想象能力.5、D【分析】在一個平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,這樣的圖形叫做中心對稱圖形.【詳解】根據(jù)定義可得A、B為軸對稱圖形;C為中心對稱圖形;D既是軸對稱圖形,也是中心對稱圖形.故選:D.考點:軸對稱圖形與中心對稱圖形6、B【詳解】∵將△AOB繞點O按逆時針方向旋轉(zhuǎn)45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故選B.7、D【解析】利用∠B的正弦值和正切值可求出BC、AB的長,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AD=AB,可證明△ADB為等邊三角形,即可求出BD的長,根據(jù)CD=BC-BD即可得答案.【詳解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵繞點A按順時針方向旋轉(zhuǎn)一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等邊三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形,熟記性質(zhì)并判斷出△ABD是等邊三角形是解題的關(guān)鍵.8、D【分析】根據(jù)OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根據(jù)三角形的外角性質(zhì)可知∠DCE=∠O+∠ODC=2∠ODC據(jù)三角形的外角性質(zhì)即可求出∠ODC數(shù),進而求出∠CDE的度數(shù).【詳解】∵,∴,,設,∴,∴,∵,∴,即,解得:,.故答案為D.【點睛】本題考查等腰三角形的性質(zhì)以及三角形的外角性質(zhì),理清各個角之間的關(guān)系是解答本題的關(guān)鍵.9、D【分析】利用根與系數(shù)的關(guān)系判斷即可.【詳解】滿足兩個實數(shù)根的和等于3的方程是2x2-6x-5=0,故選D.【點睛】此題考查了根與系數(shù)的關(guān)系,熟練掌握根與系數(shù)的關(guān)系是解本題的關(guān)鍵.10、C【分析】利用二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象依次對各結(jié)論進行判斷.【詳解】解:拋物線與軸交于點,其對稱軸為直線拋物線與軸交于點和,且由圖象知:,,故結(jié)論①正確;拋物線與x軸交于點故結(jié)論②正確;當時,y隨x的增大而增大;當時,隨的增大而減小結(jié)論③錯誤;,拋物線與軸交于點和的兩根是和,即為:,解得,;故結(jié)論④正確;當時,故結(jié)論⑤正確;拋物線與軸交于點和,,為方程的兩個根,為方程的兩個根,為函數(shù)與直線的兩個交點的橫坐標結(jié)合圖象得:且故結(jié)論⑥成立;故選C.【點睛】本題主要考查二次函數(shù)的性質(zhì),關(guān)鍵在于二次函數(shù)的系數(shù)所表示的意義,以及與一元二次方程的關(guān)系,這是二次函數(shù)的重點知識.11、C【分析】利用隨機事件和必然事件的定義對A、C進行判斷;利用比較兩事件的概率的大小判斷游戲的公平性對B進行判斷;利用中心對稱的性質(zhì)和概率公式對D進行判斷.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,可能有5次正面向上,所以A選項錯誤;B、通過拋擲一枚均勻的硬幣確定誰先發(fā)球的比賽規(guī)則是公平的,所以B選項錯誤;C、“367人中至少有2人生日相同”是必然事件,所以C選項正確;D、四張分別畫有等邊三角形、平行四邊形、菱形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形的概率是,所以D選項錯誤.故選:C.【點睛】本題考查了隨機事件以及概率公式和游戲公平性:判斷游戲公平性需要先計算每個事件的概率,然后比較概率的大小,概率相等就公平,否則就不公平.12、C【分析】利用∠ABC的正切函數(shù)求解即可.【詳解】解:∵AC⊥CD,,,∴小河寬AC=BC·tan∠ABC=100tan50°(m).?故選C.【點睛】本題考查了解直角三角形的應用,解決此問題的關(guān)鍵在于正確理解題意得基礎上建立數(shù)學模型,把實際問題轉(zhuǎn)化為數(shù)學問題.二、填空題(每題4分,共24分)13、16【分析】根據(jù)題意可知四個小正方形的面積相等,構(gòu)造出直角△OAB,設小正方形的面積為x,根據(jù)勾股定理求出x值即可得到小正方形的邊長,從而算出4個小正方形的面積和.【詳解】解:如圖,點A為上面小正方形邊的中點,點B為小正方形與圓的交點,D為小正方形和大正方形重合邊的中點,由題意可知:四個小正方形全等,且△OCD為等腰直角三角形,∵⊙O半徑為5,根據(jù)垂徑定理得:∴OD=CD==5,設小正方形的邊長為x,則AB=,則在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四個小正方形的面積和=.故答案為:16.【點睛】本題考查了垂徑定理、勾股定理、正方形的性質(zhì),熟練掌握利用勾股定理解直角三角形是解題的關(guān)鍵.14、3:1【分析】根據(jù)相似三角形的性質(zhì):相似三角形對應邊上的中線之比等于相似比即可得出答案.【詳解】∵兩個相似三角形的面積比是9:21∴兩個相似三角形的相似比是3:1∴對應邊上的中線的比為3:1故答案為:3:1.【點睛】本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.15、【分析】首先根據(jù)題意畫出表格,然后由表格求得所有等可能的結(jié)果與其乘積等于0的情況,再利用概率公式即可求得答案;【詳解】解:畫表格得:共由20種等可能性結(jié)果,其中乘積為0有8種,故乘積為0的概率為,故答案為:.【點睛】本題主要考查了列表法與樹狀圖法,掌握列表法與樹狀圖法是解題的關(guān)鍵.16、(6,6).【分析】利用位似變換的概念和相似三角形的性質(zhì)進行解答即可.【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,點O為位似中心,位似比為2:3,∴,即解得,OD=6,OF=6,則點E的坐標為(6,6),故答案為:(6,6).【點睛】本題考查了相似三角形、正方形的性質(zhì)以及位似變換的概念,掌握位似和相似的區(qū)別與聯(lián)系是解答本題的關(guān)鍵.17、16:25【分析】根據(jù)相似三角形的面積的比等于相似比的平方,據(jù)此即可求解.【詳解】解:∵兩個相似三角形的相似比為:,∴這兩個三角形的面積比;故答案為:∶.【點睛】本題考查了相似三角形性質(zhì),解題的關(guān)鍵是熟記相似三角形的性質(zhì).(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.18、1【分析】根據(jù)AD∥BC得出△AOD∽△BOC,然后利用相似三角形的面積之比可求出相似比,再根據(jù)相似比即可求出AD的長度.【詳解】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD的面積為1,△BOC的面積為18,∴△AOD與△BOC的面積之比為1:9,∴,∵BC=6,∴AD=1.故答案為:1.【點睛】本題主要考查相似三角形的性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、(1)∠APB=135°,(2)∠APB=45°;(3).【分析】(1)思路一、先利用旋轉(zhuǎn)求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',進而判斷出△APP'是直角三角形,得出∠APP'=90°,即可得出結(jié)論;
思路二、同思路一的方法即可得出結(jié)論;(2)將繞點逆時針旋轉(zhuǎn),得到,連接,然后同(1)的思路一的方法即可得出結(jié)論;(3)可先將△APB繞點A按逆時針方向旋轉(zhuǎn)60°,得到△AP'C,根據(jù)旋轉(zhuǎn)性質(zhì),角的計算可得到△APP'是等邊三角形,再根據(jù)勾股定理,得到AP的長,最后根據(jù)三角形面積得到所求.【詳解】解:(1)思路一,如圖1,將繞點逆時針旋轉(zhuǎn),得到,連接,則≌,,,,∴,根據(jù)勾股定理得,,∵,∴.又∵,∴,∴是直角三角形,且,∴;思路二、同思路一的方法.(2)如圖2,將繞點逆時針旋轉(zhuǎn),得到,連接,則≌,,,,∴,根據(jù)勾股定理得,.∵,∴.又∵,∴,∴是直角三角形,且,∴;(3)如圖3,將△APB繞點A按逆時針方向旋轉(zhuǎn)60°,得到△AP'C,
∴∠AP'C=∠APB=360°-90°-120°=150°.∵AP=AP',∴△APP'是等邊三角形,∴PP'=AP,∠AP'P=∠APP'=60°,∴∠PP'C=90°,∠P'PC=30°,∴,即.∵APC=90°,∴AP2+PC2=AC2,且,∴PC=2,∴,∴.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì),勾股定理及其逆定理,正確作出輔助線是解本題的關(guān)鍵.20、(1),米;(2)米;(3)至少要米.【分析】(1)根據(jù)點B、C的坐標,利用待定系數(shù)法即可得拋物線的解析式,再求出時y的值即可得OA的高度;(2)將拋物線的解析式化成頂點式,求出y的最大值即可得;(3)求出拋物線與x軸的交點坐標即可得.【詳解】(1)由題意,將點代入得:,解得,則拋物線的函數(shù)關(guān)系式為,當時,,故噴水裝置OA的高度米;(2)將化成頂點式為,則當時,y取得最大值,最大值為,故噴出的水流距水面的最大高度是米;(3)當時,,解得或(不符題意,舍去),故水池的半徑至少要米,才能使噴出的水流不至于落在池外.【點睛】本題考查了二次函數(shù)的實際應用,熟練掌握待定系數(shù)法和二次函數(shù)的性質(zhì)是解題關(guān)鍵.21、(1)證明見解析;(2).【分析】(1)先通過平角的度數(shù)為180°證明,再根據(jù)即可證明;(2)根據(jù)得出相似比,即可求出的長.【詳解】(1)證明:,又(2)【點睛】本題考查了相似三角形的問題,掌握相似三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.22、(1);(2);(3)或或.【分析】過點作于N,利用∠B的余弦值可求出BN的長,利用勾股定理即可求出AN的長,根據(jù)線段的和差關(guān)系可得CN的長,利用勾股定理可求出AC的長,根據(jù)AD//BC,AD=BC即可證明四邊形ABCD是平行四邊形,可得∠B=∠D,進而可證明△ABC∽△ADF,根據(jù)相似三角形的性質(zhì)即可求出AF的長;(2)根據(jù)平行線的性質(zhì)可得,根據(jù)等量代換可得,進而可證明△ABC∽△ABE,根據(jù)相似三角形的性質(zhì)可得,可用x表示出BE、CE的長,根據(jù)平行線分線段成比例定理可用x表示出的值,根據(jù)可得y與x的關(guān)系式,根據(jù)x>0,CE>0即可確定x的取值范圍;(3)分PA=PD、AP=AD和AD=PD三種情況,根據(jù)BE=及線段的和差關(guān)系,分別利用勾股定理列方程求出x的值即可得答案.【詳解】(1)如圖,過點作于N,∵AB=5,,∴在中,=5×=3,∴AN===4,∵BC=x=4,∴CN=BC-BN=4-3=1,在中,,∵AD=4,BC=x=4,∴AD=BC,∵,∴四邊形為平行四邊形,∴,又∵,∴△ABC∽△ADF,∴,∴解得:,(2)∵,∴,∵,∴,又∵∠B=∠B,∴△ABC∽△ABE,∴,∴,∵AD//BC,∴,∴,∵x>0,CE=>0,∴0<x<5,∴,(3)①如圖,當PA=PD時,作AH⊥BM于H,PG⊥AD于G,延長GP交BM于N,∵PA=PD,AD=4,∴AG=DG=2,∠ADB=∠DAE,∵AD//BE,∴GN⊥BE,∠DAE=∠AEB,∠ADB=∠DBE,∴∠DBE=∠AEB,∴PB=PE,∴BN=EN=BE=,∵,AB=5,∴BH=AB·cos∠ABH=3,∵AH⊥BM,GN⊥MB,GN⊥AD,∴∠AHN=∠GNH=∠NGA=90°,∴四邊形AHNG是矩形,∴HN=AG=2,∴BN=BH+HN=3+2=5,∴=5,解得:x=.②如圖,當AP=AD=4時,作AH⊥BM于H,∴∠ADB=∠APD,∵AD//BM,∴∠ADB=∠DBC,∵∠APD=∠BPE,∴∠DBC=∠BPE,∴BE=PE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∴在Rt△AEH中,(4+)2=42+(3-)2,解得:x=,③如圖,當AD=PD=4時,作AH⊥BM于H,DN⊥BM于N,∴∠DAP=∠DPA,∵AD//BM,∴∠DAP=∠AEB,∵∠APD=∠BPE,∴∠BPE=∠AEB,∴BP=BE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∵AD//BM,AH⊥BM,DN⊥BM,∴四邊形AHND是矩形,∴DN=AH=4,HN=AD=4,中Rt△BND中,(4+)2=42+(4+3)2,解得:x=,綜上所述:x的值為或或.【點睛】本題考查相似三角形的綜合,熟練掌握銳角三角函數(shù)的定義、平行線的性質(zhì)、等腰三角形的性質(zhì)及相似三角形的判定與性質(zhì),靈活運用分類討論的思想是解題關(guān)鍵.23、證明見解析.【分析】連接OC,證明三角形△COD和△COE全等;然后利用全等三角形的對應邊相等得到CD=CE.【詳解】解:連接OC.在⊙O中,∵,∴∠AOC=∠BOC,∵OA=OB,D.E分別是半徑OA和OB的中點,∴OD=OE,∵OC=OC(公共邊),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的對應邊相等).【點睛】本題考查圓心角、弧、弦的關(guān)系;全等三角形的判定與性質(zhì).24、(1)①詳見解析;②1;(1)詳見解析;(3)BD=.【分析】(1)①根據(jù)題意畫出圖形即可.②解直角三角形求出PA,再利用全等三角形的性質(zhì)證明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通過計算證明DF=FQ即可解決問題.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,,利用相似三角形的性質(zhì)構(gòu)建方程求解即可解決問題.【詳解】(1)解:①補全圖形如圖所示:②∵△ABD是等邊三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD?tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如圖:∵PA⊥AD,∴∠PAD=90°由題意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電商合作條款合同
- 購銷合同英文版翻譯
- 坐月子中心服務合同范本
- 標準居間合同協(xié)議格式
- 詳盡大理石采購合同指南
- 銀行協(xié)定存款合同樣式
- 藥品購銷合同的合同證據(jù)收集與保全
- 演出期間創(chuàng)意設計合同
- 雨傘連鎖銷售協(xié)議
- 工程安全監(jiān)督合同
- 2025眼科護理工作計劃
- 收購公司法律盡職調(diào)查合同(2篇)
- 綠色財政政策
- 第六單元多邊形的面積 (單元測試)-2024-2025學年五年級上冊數(shù)學人教版
- 《內(nèi)外科疾病康復學》課程教學大綱
- 公路養(yǎng)護培訓知識
- 國家安全教育高教-第六章堅持以經(jīng)濟安全為基礎
- 鋰電儲能產(chǎn)品設計及案例詳解-筆記
- 廣東開放大學2024年秋《國家安全概論(S)(本專)》形成性考核作業(yè)參考答案
- 期末模擬考試卷01-2024-2025學年上學期高二思想政治課《哲學與人生》原題卷+答案卷
- 小兒靜脈留置針操作與護理
評論
0/150
提交評論