廣東省東莞市中學(xué)堂鎮(zhèn)六校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第1頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第2頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第3頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第4頁
廣東省東莞市中學(xué)堂鎮(zhèn)六校2023-2024學(xué)年中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省東莞市中學(xué)堂鎮(zhèn)六校2023-2024學(xué)年中考一模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知拋物線y=x2-2mx-4(m>0)的頂點M關(guān)于坐標原點O的對稱點為M′,若點M′在這條拋物線上,則點M的坐標為()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)2.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣33.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點,則以DE為直徑的圓與BC的位置關(guān)系是()A.相切 B.相交 C.相離 D.無法確定4.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣75.綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:每批粒數(shù)n100300400600100020003000發(fā)芽的粒數(shù)m9628238257094819042850發(fā)芽的頻率0.9600.9400.9550.9500.9480.9520.950下面有三個推斷:①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率是0.955;②根據(jù)上表,估計綠豆發(fā)芽的概率是0.95;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為3800粒.其中推斷合理的是()A.① B.①② C.①③ D.②③6.如圖,矩形是由三個全等矩形拼成的,與,,,,分別交于點,設(shè),,的面積依次為,,,若,則的值為()A.6 B.8 C.10 D.127.如圖中任意畫一個點,落在黑色區(qū)域的概率是()A. B. C.π D.508.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,則BE的長為()A.5 B.4 C.3 D.29.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數(shù)為()A.30° B.40° C.50° D.60°10.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.12.一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,從中任意摸出一個球恰好是紅球的概率是____.13.計算:()?=__.14.如圖,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,點D是AC邊上一動點,連接BD,以AD為直徑的圓交BD于點E,則線段CE長度的最小值為___.15.我國明代數(shù)學(xué)家程大位的名著《直指算法統(tǒng)宗》里有一道著名算題:“一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?”意思是:有100個和尚分100個饅頭,如果大和尚一人分3個,小和尚3人分1個,正好分完,試問大、小和尚各幾人?設(shè)大、小和尚各有x,y人,則可以列方程組__________.16.方程的根是________.三、解答題(共8題,共72分)17.(8分)我市某中學(xué)決定在八年級陽光體育“大課間”活動中開設(shè)A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?(2)將兩個統(tǒng)計圖補充完整;(3)若調(diào)查到喜歡“立定跳遠”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.18.(8分)隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了“你最喜歡的溝通方式”調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:(1)這次統(tǒng)計共抽查了_____名學(xué)生,最喜歡用電話溝通的所對應(yīng)扇形的圓心角是____°;(2)將條形統(tǒng)計圖補充完整;(3)運用這次的調(diào)查結(jié)果估計1200名學(xué)生中最喜歡用QQ進行溝通的學(xué)生有多少名?(4)甲、乙兩名同學(xué)從微信,QQ,電話三種溝通方式中隨機選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學(xué)恰好選中同一種溝通方式的概率.19.(8分)某紡織廠生產(chǎn)的產(chǎn)品,原來每件出廠價為80元,成本為60元.由于在生產(chǎn)過程中平均每生產(chǎn)一件產(chǎn)品有0.5的污水排出,現(xiàn)在為了保護環(huán)境,需對污水凈化處理后再排出.已知每處理1污水的費用為2元,且每月排污設(shè)備損耗為8000元.設(shè)現(xiàn)在該廠每月生產(chǎn)產(chǎn)品x件,每月純利潤y元:(1)求出y與x的函數(shù)關(guān)系式.(純利潤=總收入-總支出)(2)當y=106000時,求該廠在這個月中生產(chǎn)產(chǎn)品的件數(shù).20.(8分)某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=﹣2x+1.設(shè)這種產(chǎn)品每天的銷售利潤為W元.(1)該農(nóng)戶想要每天獲得150元得銷售利潤,銷售價應(yīng)定為每千克多少元?(2)如果物價部門規(guī)定這種農(nóng)產(chǎn)品的銷售價不高于每千克28元,銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?21.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結(jié)DN,當四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點F為AB的中點,連結(jié)FN、FM,求證:△MFN∽△BDC.22.(10分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.23.(12分)為實施“農(nóng)村留守兒童關(guān)愛計劃”,某校結(jié)全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.24.在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:=,∴點M(m,﹣m2﹣1),∴點M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故選C.考點:二次函數(shù)的性質(zhì).2、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關(guān)鍵.3、B【解析】

首先過點A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進而得出直線與圓的位置關(guān)系.【詳解】解:過點A作AM⊥BC于點M,交DE于點N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關(guān)系是:相交.故選B.【點睛】本題考查了直線和圓的位置關(guān)系,利用中位線定理得出BC到圓心的距離與半徑的大小關(guān)系是解題的關(guān)鍵.4、A【解析】

直接利用分式有意義則分母不為零進而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當分母不等于零時,分式有意義;當分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).5、D【解析】

①利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,n=400,數(shù)值較小,不能近似的看為概率,①錯誤;②利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率,可得②正確;③用4000乘以綠豆發(fā)芽的的概率即可求得綠豆發(fā)芽的粒數(shù),③正確.【詳解】①當n=400時,綠豆發(fā)芽的頻率為0.955,所以綠豆發(fā)芽的概率大約是0.955,此推斷錯誤;②根據(jù)上表當每批粒數(shù)足夠大時,頻率逐漸接近于0.950,所以估計綠豆發(fā)芽的概率是0.95,此推斷正確;③若n為4000,估計綠豆發(fā)芽的粒數(shù)大約為4000×0.950=3800粒,此結(jié)論正確.故選D.【點睛】本題考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.6、B【解析】

由條件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ與△DKM的相似比為,△BPQ與△CNH相似比為,由相似三角形的性質(zhì),就可以求出,從而可以求出.【詳解】∵矩形AEHC是由三個全等矩形拼成的,

∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴,,∵EF=FG=BD=CD,AC∥EH,

∴四邊形BEFD、四邊形DFGC是平行四邊形,

∴BE∥DF∥CG,

∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,

∴△BPQ∽△DKM,△BPQ∽△CNH,∴,,即,,,∴,即,解得:,∴,故選:B.【點睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),相似三角形的判定與性質(zhì),三角形的面積公式,得出S2=4S1,S3=9S1是解題關(guān)鍵.7、B【解析】

抓住黑白面積相等,根據(jù)概率公式可求出概率.【詳解】因為,黑白區(qū)域面積相等,所以,點落在黑色區(qū)域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關(guān)鍵點:分清黑白區(qū)域面積關(guān)系.8、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉(zhuǎn)

60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),主要利用了旋轉(zhuǎn)前后對應(yīng)邊相等以及旋轉(zhuǎn)角的定義.9、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.10、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點式進行;二、填空題(本大題共6個小題,每小題3分,共18分)11、50【解析】試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結(jié)EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點:圓內(nèi)接四邊形的性質(zhì).12、.【解析】

根據(jù)隨機事件概率大小的求法,找準兩點:①符合條件的情況數(shù)目;②全部情況的總數(shù).二者的比值就是其發(fā)生的概率的大?。驹斀狻俊咭粋€不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,∴從中任意摸出一個球恰好是紅球的概率為:,故答案為.【點睛】本題考查了概率公式的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.13、1【解析】試題分析:首先進行通分,然后再進行因式分解,從而進行約分得出答案.原式=.14、﹣2【解析】

連結(jié)AE,如圖1,先根據(jù)等腰直角三角形的性質(zhì)得到AB=AC=4,再根據(jù)圓周角定理,由AD為直徑得到∠AED=90°,接著由∠AEB=90°得到點E在以AB為直徑的O上,于是當點O、E、C共線時,CE最小,如圖2,在Rt△AOC中利用勾股定理計算出OC=2,從而得到CE的最小值為2﹣2.【詳解】連結(jié)AE,如圖1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD為直徑,∴∠AED=90°,∴∠AEB=90°,∴點E在以AB為直徑的O上,∵O的半徑為2,∴當點O、E.C共線時,CE最小,如圖2在Rt△AOC中,∵OA=2,AC=4,∴OC=,∴CE=OC?OE=2﹣2,即線段CE長度的最小值為2﹣2.故答案為:2﹣2.【點睛】此題考查等腰直角三角形的性質(zhì),圓周角定理,勾股定理,解題關(guān)鍵在于結(jié)合實際運用圓的相關(guān)性質(zhì).15、3x+【解析】

根據(jù)100個和尚分100個饅頭,正好分完.大和尚一人分3個,小和尚3人分一個得到等量關(guān)系為:大和尚的人數(shù)+小和尚的人數(shù)=100,大和尚分得的饅頭數(shù)+小和尚分得的饅頭數(shù)=100,依此列出方程組即可.【詳解】設(shè)大和尚x人,小和尚y人,由題意可得x+y=故答案為x+y=【點睛】本題考查了由實際問題抽象出二元一次方程組,關(guān)鍵以和尚數(shù)和饅頭數(shù)作為等量關(guān)系列出方程組.16、x=2【解析】分析:解此方程首先要把它化為我們熟悉的方程(一元二次方程),解新方程,檢驗是否符合題意,即可求得原方程的解.詳解:據(jù)題意得:2+2x=x2,∴x2﹣2x﹣2=0,∴(x﹣2)(x+1)=0,∴x1=2,x2=﹣1.∵≥0,∴x=2.故答案為:2.點睛:本題考查了學(xué)生綜合應(yīng)用能力,解方程時要注意解題方法的選擇,在求值時要注意解的檢驗.三、解答題(共8題,共72分)17、(1)50名;(2)補圖見解析;(3)剛好抽到同性別學(xué)生的概率是【解析】試題分析:(1)由題意可得本次調(diào)查的學(xué)生共有:15÷30%;(2)先求出C的人數(shù),再求出C的百分比即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與剛好抽到同性別學(xué)生的情況,再利用概率公式即可求得答案.試題解析:(1)根據(jù)題意得:15÷30%=50(名).答;在這項調(diào)查中,共調(diào)查了50名學(xué)生;(2)圖如下:(3)用A表示男生,B表示女生,畫圖如下:共有20種情況,同性別學(xué)生的情況是8種,則剛好抽到同性別學(xué)生的概率是.18、(1)120,54;(2)補圖見解析;(3)660名;(4).【解析】

(1)用喜歡使用微信的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用360°乘以樣本中電話人數(shù)所占比例;(2)先計算出喜歡使用短信的人數(shù),然后補全條形統(tǒng)計圖;(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進行溝通的學(xué)生所占的百分比即可;(4)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出甲乙兩名同學(xué)恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1)這次統(tǒng)計共抽查學(xué)生24÷20%=120(人),其中最喜歡用電話溝通的所對應(yīng)扇形的圓心角是360°×=54°,故答案為120、54;(2)喜歡使用短信的人數(shù)為120﹣18﹣24﹣66﹣2=10(人),條形統(tǒng)計圖為:(3)1200×=660,所以估計1200名學(xué)生中最喜歡用QQ進行溝通的學(xué)生有660名;(4)畫樹狀圖為:共有9種等可能的結(jié)果數(shù),甲乙兩名同學(xué)恰好選中同一種溝通方式的結(jié)果數(shù)為3,所以甲乙兩名同學(xué)恰好選中同一種溝通方式的概率.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖和用樣本估計總體.19、(1)y=19x-1(x>0且x是整數(shù))(2)6000件【解析】

(1)本題的等量關(guān)系是:純利潤=產(chǎn)品的出廠單價×產(chǎn)品的數(shù)量-產(chǎn)品的成本價×產(chǎn)品的數(shù)量-生產(chǎn)過程中的污水處理費-排污設(shè)備的損耗,可根據(jù)此等量關(guān)系來列出總利潤與產(chǎn)品數(shù)量之間的函數(shù)關(guān)系式;(2)根據(jù)(1)中得出的式子,將y的值代入其中,求出x即可.【詳解】(1)依題意得:y=80x-60x-0.5x?2-1,化簡得:y=19x-1,∴所求的函數(shù)關(guān)系式為y=19x-1.(x>0且x是整數(shù))(2)當y=106000時,代入得:106000=19x-1,解得x=6000,∴這個月該廠生產(chǎn)產(chǎn)品6000件.【點睛】本題是利用一次函數(shù)的有關(guān)知識解答實際應(yīng)用題,可根據(jù)題意找出等量關(guān)系,列出函數(shù)式進行求解.20、(1)該農(nóng)戶想要每天獲得150元得銷售利潤,銷售價應(yīng)定為每千克25元或35元;(2)192元.【解析】

(1)直接利用每件利潤×銷量=總利潤進而得出等式求出答案;(2)直接利用每件利潤×銷量=總利潤進而得出函數(shù)關(guān)系式,利用二次函數(shù)增減性求出答案.【詳解】(1)根據(jù)題意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:該農(nóng)戶想要每天獲得150元得銷售利潤,銷售價應(yīng)定為每千克25元或35元;(2)由題意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴拋物線開口向下,當x<30時,y隨x的增大而增大,又由于這種農(nóng)產(chǎn)品的銷售價不高于每千克28元∴當x=28時,W最大=﹣2×(28﹣30)2+200=192(元).∴銷售價定為每千克28元時,每天的銷售利潤最大,最大利潤是192元.【點睛】此題主要考查了一元二次方程的應(yīng)用以及二次函數(shù)的應(yīng)用,正確應(yīng)用二次函數(shù)增減性是解題關(guān)鍵.21、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M為BC的中點,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設(shè)BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負值舍去),∴BC=2a=;(3)∵F是AB的中點,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點睛:本題主要考查相似形的綜合問題,解題的關(guān)鍵是掌握等腰三角形三線合一的性質(zhì)、直角三角形和平行四邊形的性質(zhì)及全等三角形與相似三角形的判定與性質(zhì)等知識點.22、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論