2022年福建省福州市第三十中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
2022年福建省福州市第三十中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
2022年福建省福州市第三十中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
2022年福建省福州市第三十中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
2022年福建省福州市第三十中學(xué)數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.一5的絕對值是()A.5 B. C. D.-52.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“福”、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④3.在下列幾何體中,主視圖、左視圖和俯視圖形狀都相同的是()A. B. C. D.4.如圖,Rt△ABC中,∠C=90°,∠B=30°,分別以點A和點B為圓心,大于的長為半徑作弧,兩弧相交于M、N兩點,作直線MN,交BC于點D,連接AD,則∠CAD的度數(shù)是()A.20° B.30° C.45° D.60°5.如圖,正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度.,在格點上,現(xiàn)將線段向下平移個單位長度,再向左平移個單位長度,得到線段,連接,.若四邊形是正方形,則的值是()A.3 B.4 C.5 D.66.如圖,在菱形中,,,,則的值是()A. B.2 C. D.7.如圖,正三角形ABC的邊長為4cm,D,E,F(xiàn)分別為BC,AC,AB的中點,以A,B,C三點為圓心,2cm為半徑作圓.則圖中陰影部分面積為()A.(2-π)cm2 B.(π-)cm2 C.(4-2π)cm2 D.(2π-2)cm28.一元二次方程x2=9的根是()A.3 B.±3 C.9 D.±99.菱形的兩條對角線長分別為60cm和80cm,那么邊長是()A.60cm B.50cm C.40cm D.80cm10.如圖,AB與CD相交于點E,點F在線段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,則的值為()A. B. C. D.11.下列是一元二次方程的是()A. B. C. D.12.下列方程中,關(guān)于x的一元二次方程是()A.3(x+1)2=2(x+1) B.+-2=0C.a(chǎn)x2+bx+c=0 D.x2+2x=x2-1二、填空題(每題4分,共24分)13.小亮在投籃訓(xùn)練中,對多次投籃的數(shù)據(jù)進行記錄.得到如下頻數(shù)表:投籃次數(shù)20406080120160200投中次數(shù)1533496397128160投中的頻率0.750.830.820.790.810.80.8估計小亮投一次籃,投中的概率是______.14.若m是方程5x2﹣3x﹣1=0的一個根,則15m﹣+2010的值為_____.15.如圖,已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.16.一枚質(zhì)地均勻的骰子,其六個面上分別標有數(shù)字:1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率是__________.17.如圖,在△ABC中,點D、E分別在△ABC的兩邊AB、AC上,且DE∥BC,如果,,,那么線段BC的長是______.18.半徑為4cm,圓心角為60°的扇形的面積為cm1.三、解答題(共78分)19.(8分)某班級元旦晚會上,有一個闖關(guān)游戲,在一個不透明的布袋中放入3個乒乓球,除顏色外其它都相同,它們的顏色分別是綠色、黃色和紅色.攪均后從中隨意地摸出一個乒乓球,記下顏色后放回,攪均后再從袋中隨意地摸出一個乒乓球,如果兩次摸出的球的顏色相同,即為過關(guān).請用畫樹狀圖或列表法求過關(guān)的概率.20.(8分)如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經(jīng)過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C,已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.(1)求拋物線的解析式;(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD、BD①當△OPC為等腰三角形時,求點P的坐標;②求△BOD面積的最大值,并寫出此時點D的坐標.21.(8分)如圖,點O為∠ABC的邊上的一點,過點O作OM⊥AB于點,到點的距離等于線段OM的長的所有點組成圖形.圖形W與射線交于E,F(xiàn)兩點(點在點F的左側(cè)).(1)過點作于點,如果BE=2,,求MH的長;(2)將射線BC繞點B順時針旋轉(zhuǎn)得到射線BD,使得∠,判斷射線BD與圖形公共點的個數(shù),并證明.22.(10分)如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E,(1)求證:CD為⊙O的切線;(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)23.(10分)解下列方程(1)(2)24.(10分)平面直角坐標系中,矩形OABC的頂點A,C的坐標分別為,,點D是經(jīng)過點B,C的拋物線的頂點.(1)求拋物線的解析式;(2)點E是(1)中拋物線對稱軸上一動點,求當△EAB的周長最小時點E的坐標;(3)平移拋物線,使拋物線的頂點始終在直線CD上移動,若平移后的拋物線與射線BD只有一個公共點,直接寫出平移后拋物線頂點的橫坐標的值或取值范圍.25.(12分)如圖,在一塊長8、寬6的矩形綠地內(nèi),開辟出一個矩形的花圃,使四周的綠地等寬,已知綠地的面積與花圃的面積相等,求花圃四周綠地的寬.26.如圖,已知拋物線y=x2-x-3與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.(1)直接寫出A、D、C三點的坐標;(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;(3)設(shè)點C關(guān)于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣5到原點的距離是5,所以﹣5的絕對值是5,故選A.2、D【分析】根據(jù)中心對稱圖形的定義,結(jié)合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關(guān)鍵3、C【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依次找到主視圖、左視圖和俯視圖形狀都相同的圖形即可.【詳解】解:A、圓臺的主視圖和左視圖相同,都是梯形,俯視圖是圓環(huán),故選項不符合題意;B、三棱柱的主視圖和左視圖、俯視圖都不相同,故選項不符合題意;C、球的三視圖都是大小相同的圓,故選項符合題意.D、圓錐的三視圖分別為等腰三角形,等腰三角形,含圓心的圓,故選項不符合題意;故選C.【點睛】本題考查了三視圖的有關(guān)知識,注意三視圖都相同的常見的幾何體有球和正方體.4、B【分析】根據(jù)內(nèi)角和定理求得∠BAC=60°,由中垂線性質(zhì)知DA=DB,即∠DAB=∠B=30°,從而得出答案.【詳解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作圖可知MN為AB的中垂線,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故選B.【點睛】本題主要考查作圖-基本作圖,熟練掌握中垂線的作圖和性質(zhì)是解題的關(guān)鍵.5、A【分析】根據(jù)線段的平移規(guī)律可以看出,線段AB向下平移了1個單位,向左平移了2個單位,相加即可得出.【詳解】解:根據(jù)線段的平移規(guī)律可以看出,線段AB向下平移了1個單位,向左平移了2個單位,得到A'B',則m+n=1.故選:A【點睛】本題考查的是線段的平移問題,觀察圖形時要考慮其中一點就行.6、B【分析】由菱形的性質(zhì)得AD=AB,由,求出AD的長度,利用勾股定理求出DE,即可求出的值.【詳解】解:在菱形中,有AD=AB,∵,AE=ADAD3,∴,∴,∴,∴,∴;故選:B.【點睛】本題考查了三角函數(shù),菱形的性質(zhì),以及勾股定理,解題的關(guān)鍵是根據(jù)三角函數(shù)值正確求出菱形的邊長,然后進行計算即可.7、C【分析】連接AD,由等邊三角形的性質(zhì)可知AD⊥BC,∠A=∠B=∠C=60°,根據(jù)S陰影=S△ABC-3S扇形AEF即可得出結(jié)論.【詳解】連接AD,∵△ABC是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°,∵BD=CD,∴AD⊥BC,∴AD==,∴S陰影=S△ABC-3S扇形AEF=×4×2﹣=(4﹣2π)cm2,故選C.【點睛】本題考查了有關(guān)扇形面積的計算,熟記扇形的面積公式是解答此題的關(guān)鍵.8、B【解析】兩邊直接開平方得:,進而可得答案.【詳解】解:,兩邊直接開平方得:,則,.故選:B.【點睛】此題主要考查了直接開平方法解一元二次方程,解這類問題一般要移項,把所含未知數(shù)的項移到等號的左邊,把常數(shù)項移項等號的右邊,化成的形式,利用數(shù)的開方直接求解.9、B【分析】根據(jù)菱形的對角線互相垂直平分求出OA、OB的長,再利用勾股定理列式求出邊長AB,然后根據(jù)菱形的周長公式列式進行計算即可得解.【詳解】解:如圖,∵菱形的兩條對角線的長是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的對角線AC⊥BD,∴AB==50cm,∴這個菱形的邊長是50cm.故選B.【點睛】本題考查了菱形的性質(zhì),勾股定理的應(yīng)用,主要利用了菱形的對角線互相垂直平分的性質(zhì).10、A【分析】根據(jù)平行線分線段成比例定理得可求出BC的長,從而可得CF的長,再根據(jù)平行線分線段成比例定理得,求解即可得.【詳解】又,解得又故選:A.【點睛】本題考查了平行線分線段成比例定理,根據(jù)定理求出BC的長是解題關(guān)鍵.11、A【分析】用一元二次方程的定義,1看等式,2看含一個未知數(shù),3看未知數(shù)次數(shù)是2次,4看二次項系數(shù)不為零,5看是整式即可.【詳解】A、由定義知A是一元二次方程,B、不是等式則B不是一元二次方程,C、二次項系數(shù)a可能為0,則C不是一元二次方程,D、含兩個未知數(shù),則D不是一元二次方程.【點睛】本題考查判斷一元二次方程問題,關(guān)鍵是掌握定義,注意特點1看等式,2看含一個未知數(shù),3看未知數(shù)次數(shù)是2次,4看二次項數(shù)系數(shù)不為零,5看是整式.12、A【分析】依據(jù)一元二次方程的定義判斷即可.【詳解】A.3(x+1)2=2(x+1)是一元二次方程,故A正確;B.+-2=0是分式方程,故B錯誤;C.當a=0時,方程ax2+bx+c=0不是一元二次方程,故C錯誤;D.x2+2x=x2-1,整理得2x=-1是一元一次方程,故D錯誤;故選A.【點睛】此題考查一元二次方程的定義,解題關(guān)鍵在于掌握其定義.二、填空題(每題4分,共24分)13、0.1【分析】由小亮每次投籃的投中的頻率繼而可估計出這名球員投一次籃投中的概率.【詳解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的頻率大都穩(wěn)定在0.1左右,∴估計小亮投一次籃投中的概率是0.1,故答案為:0.1.【點睛】本題比較容易,考查了利用頻率估計概率.大量反復(fù)試驗下頻率值即概率.概率=所求情況數(shù)與總情況數(shù)之比.14、1【分析】根據(jù)m是方程5x2﹣3x﹣1=0的一個根代入得到5m2﹣3m﹣1=0,進一步得到5m2﹣1=3m,兩邊同時除以m得:5m﹣=3,然后整體代入即可求得答案.【詳解】解:∵m是方程5x2﹣3x﹣1=0的一個根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,兩邊同時除以m得:5m﹣=3,∴15m﹣+2010=3(5m﹣)+2010=9+2010=1,故答案為:1.【點睛】本題考查了一元二次方程的根,靈活的進行代數(shù)式的變形是解題的關(guān)鍵.15、-1【解析】試題解析:設(shè)點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數(shù)圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數(shù)k的幾何意義.16、【解析】試題分析:骰子共有六個面,每個面朝上的機會是相等的,而奇數(shù)有1,3,5;根據(jù)概率公式即可計算.試題解析:∵骰子六個面中奇數(shù)為1,3,5,∴P(向上一面為奇數(shù))=.考點:概率公式.17、;【分析】根據(jù)DE∥BC可得,再由相似三角形性質(zhì)列比例式即可求解.【詳解】解:,,,又∵,,,,解得:故答案為:.【點睛】本題主要考查了平行線分線段成比例定理的應(yīng)用,找準對應(yīng)線段是解題的關(guān)鍵.18、.【解析】試題分析:根據(jù)扇形的面積公式求解.試題解析:.考點:扇形的面積公式.三、解答題(共78分)19、.【分析】先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果.【詳解】解:畫樹狀圖如下:共有9種等可能的結(jié)果數(shù),其中兩次摸出的球的顏色相同的結(jié)果數(shù)為3,所以過關(guān)的概率是=.【點睛】本題的考點是樹狀圖法.方法是根據(jù)題意畫出樹狀圖,由樹狀圖得出答案.20、(1)拋物線的解析式為;(2)①P點坐標為P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B兩點的坐標,從而利用待定系數(shù)法求出二次函數(shù)解析式即可.(2)①首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質(zhì)得出當OC=OP時,當OP=PC時,點P在線段OC的中垂線上,當OC=PC時分別求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出關(guān)于x的二次函數(shù),從而得出最值即可.【詳解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵拋物線過原點,設(shè)拋物線的解析式為y=ax2+bx.∴,解得:.∴拋物線的解析式為.(2)①設(shè)直線AB的解析式為y=kx+b.∴,解得:.∴直線AB的解析式為.∴C點坐標為(0,).∵直線OB過點O(0,0),B(2,﹣2),∴直線OB的解析式為y=﹣x.∵△OPC為等腰三角形,∴OC=OP或OP=PC或OC=PC.設(shè)P(x,﹣x).(i)當OC=OP時,,解得(舍去).∴P1().(ii)當OP=PC時,點P在線段OC的中垂線上,∴P2().(iii)當OC=PC時,由,解得(舍去).∴P2().綜上所述,P點坐標為P1()或P2()或P2().②過點D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.設(shè)Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ?OG+DQ?GH=DQ(OG+GH)==.∵0<x<2,∴當時,S取得最大值為,此時D().【點睛】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、解一元二次方程、圖形的面積計算等,其中(2)要注意分類求解,避免遺漏.21、(1)MH=;(2)1個.【分析】(1)先根據(jù)題意補全圖形,然后利用銳角三角函數(shù)求出圓的半徑即OM的長度,再利用勾股定理求出BM的長度,最后利用可求出MH的長度.(2)過點O作⊥于點,通過等量代換可知∠∠,從而利用角平分線的性質(zhì)可知,得出為⊙的切線,從而可確定公共點的個數(shù).【詳解】解:(1)∵到點的距離等于線段的長的所有點組成圖形,∴圖形是以為圓心,的長為半徑的圓.根據(jù)題意補全圖形:∵于點M,∴∠.在△中,,∴.∵∴,解得:.∴.在△中,,∴.∵∴∴.(2)解:1個.證明:過點O作⊥于點,∵∠∠,且∠∠,∴∠∠.∴.∴為⊙的切線.∴射線與圖形的公共點個數(shù)為1個.【點睛】本題主要考查解直角三角形和直線與圓的位置關(guān)系,掌握圓的相關(guān)性質(zhì),勾股定理和角平分線的性質(zhì)是解題的關(guān)鍵.22、(1)見解析;(2)【分析】(1)連接OD,由BC是⊙O的切線,可得∠ABC=90°,由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線.(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長,∠BOD的度數(shù),又由,即可求得答案.【詳解】解:(1)證明:連接OD,∵BC是⊙O的切線,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵點D在⊙O上,∴CD為⊙O的切線.(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=.∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴.23、(1);(2).【分析】(1)方程變形后,利用因式分解法即可求解;(2)方程變形后,利用因式分解法即可求解.【詳解】(1)方程變形得:,

分解因式得:,

即:或,∴;(2)方程變形得:,

分解因式得:,

即:或,∴.【點睛】本題考查了一元二次方程的解法,靈活運用因式分解法是解決本題的關(guān)鍵.24、(1);(2);(3)或【分析】(1)根據(jù)題意可得出點B的坐標,將點B、C的坐標分別代入二次函數(shù)解析式,求出b、c的值即可.(2)在對稱軸上取一點E,連接EC、EB、EA,要使得EAB的周長最小,即要使EB+EA的值最小,即要使EA+EC的值最小,當點C、E、A三點共線時,EA+EC最小,求出直線AC的解析式,最后求出直線AC與對稱軸的交點坐標即可.(3)求出直線CD以及射線BD的解析式,即可得出平移后頂點的坐標,寫出二次函數(shù)頂點式解析式,分類討論,如圖:①當拋物線經(jīng)過點B時,將點B的坐標代入二次函數(shù)解析式,求出m的值,寫出m的范圍即可;②當拋物線與射線恰好只有一個公共點H時,將拋物線解析式與射線解析式聯(lián)立可得關(guān)于x的一元二次方程,要使平移后的拋物線與射線BD只有一個公共點,即要使一元二次方程有兩個相等的實數(shù)根,即,列式求出m的值即可.【詳解】(1)矩形OABC,OC=AB,A(2,0),C(0,3),OA=2,OC=3,B(2,3),將點B,C的坐標分別代入二次函數(shù)解析式,,,拋物線解析式為:.(2)如圖,在對稱軸上取一點E,連接EC、EB、EA,當點C、E、A三點共線時,EA+EC最小,即EAB的周長最小,設(shè)直線解析式為:y=kx+b,將點A、C的坐標代入可得:,解得:,一次函數(shù)解析式為:.=,D(1,4),令x=1,y==.E(1,).(3)設(shè)直線CD解析式為:y=kx+b,C(0,3),D(1,4),,解得,直線CD解析式為:y=x+3,同理求出射線BD的解析式為:y=-x+5(x≤2),設(shè)平移后的頂點坐標為(m,m+3),則拋物線解析式為:y=-(x-m)2+m+3,①如圖,當拋物線經(jīng)過點B時,-(2-m)2+m+3=3,解得m=1或4,當1<m≤4時,平移后的拋物線與射線只有一個公共點;②如圖,當拋物線與射線恰好只有一個公共點H時,將拋物線解析式與射線解析式聯(lián)立可得:-(x-m)2+m+3=-x+5,即x2-(2m+1)x+m2-m+2=0,要使平移后的拋物線與射線BD只有一個公共點,即要使一元二次方程有兩個相等的實數(shù)根,,解得.綜上所述,或時,平移后的拋物線與射線BD只有一個公共點.【點睛】本題為二次函數(shù)、一次函數(shù)與幾何、一元二次方程方程綜合題,一般作為壓軸題,主要考查了圖形的軸對稱、二次函數(shù)的平移、函數(shù)解析式的求解以及二次函數(shù)與一元二次方程的關(guān)系,本題關(guān)鍵在于:①將三角形的周長最小問題轉(zhuǎn)化為兩線段之和最小問題,利用軸對稱的性質(zhì)解題;②將二次函數(shù)與一次函數(shù)的交點個數(shù)問題轉(zhuǎn)化為一元二次方程實數(shù)根的個數(shù)問題.25、花圃四周綠地的寬為1m【分析】設(shè)花圃四周綠地的寬為x米,根據(jù)矩形花圃的面積=矩形綠地面積的一半列方程求解即可.【詳解】解:設(shè)花圃四周綠地的寬為xm,由題意,得:(6-2x)(8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論