版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第3課時成對數(shù)據(jù)的統(tǒng)計分析[考試要求]1.了解樣本相關(guān)系數(shù)的統(tǒng)計含義,會通過散點圖或相關(guān)系數(shù)比較多組成對數(shù)據(jù)的相關(guān)性.2.了解一元線性回歸模型的含義,針對實際問題,會用一元線性回歸模型進(jìn)行預(yù)測.3.理解2×2列聯(lián)表的統(tǒng)計意義,了解2×2列聯(lián)表獨立性檢驗及其應(yīng)用.考點一成對數(shù)據(jù)的相關(guān)性1.變量的相關(guān)關(guān)系兩個變量有關(guān)系,但又沒有確切到可由其中的一個去精確地決定另一個的程度,這種關(guān)系稱為相關(guān)關(guān)系.2.相關(guān)關(guān)系的分類(1)按變量間的增減性分為正相關(guān)和負(fù)相關(guān).①正相關(guān):當(dāng)一個變量的值增加時,另一個變量的相應(yīng)值也呈現(xiàn)增加的趨勢;②負(fù)相關(guān):當(dāng)一個變量的值增加時,另一個變量的相應(yīng)值呈現(xiàn)減少的趨勢.(2)按變量間是否有線性特征分為線性相關(guān)和非線性相關(guān)或曲線相關(guān).①線性相關(guān):如果兩個變量的取值呈現(xiàn)正相關(guān)或負(fù)相關(guān),而且散點落在一條直線附近,我們稱這兩個變量線性相關(guān);②非線性相關(guān)或曲線相關(guān):如果兩個變量具有相關(guān)性,但不是線性相關(guān),我們稱這兩個變量非線性相關(guān)或曲線相關(guān).3.相關(guān)關(guān)系的刻畫(1)散點圖:成對樣本數(shù)據(jù)用直角坐標(biāo)系中的點表示出來,由這些點組成的統(tǒng)計圖,叫做散點圖.(2)樣本相關(guān)系數(shù)r的計算式(3)樣本相關(guān)系數(shù)r的性質(zhì)①樣本相關(guān)系數(shù)r的取值范圍為[-1,1];②若r>0時,成對樣本數(shù)據(jù)正相關(guān);③若r<0時,成對樣本數(shù)據(jù)負(fù)相關(guān);④當(dāng)|r|越接近1時,成對樣本數(shù)據(jù)的線性相關(guān)程度越強(qiáng);當(dāng)|r|越接近0時,成對樣本數(shù)據(jù)的線性相關(guān)程度越弱.提醒:當(dāng)兩個變量的相關(guān)系數(shù)|r|=1時,兩個變量呈函數(shù)關(guān)系.[典例1](1)(2023·江西上饒統(tǒng)考二模)中國新能源汽車出口實現(xiàn)跨越式突破,是國產(chǎn)汽車品牌實現(xiàn)彎道超車,打造核心競爭力的主要抓手.下表是2023年我國某新能源汽車廠前5個月的銷量y和月份x的統(tǒng)計表,根據(jù)表中的數(shù)據(jù)可得經(jīng)驗回歸方程為y=bx+1.16,則下列四個命題正確的個數(shù)為()月份x12345銷量y/萬輛1.51.622.42.5①變量x與y正相關(guān);②b=0.24;③y與x的樣本相關(guān)系數(shù)r>0;④2023年7月該新能源汽車廠的銷量一定是3.12萬輛.A.1B.2C.3D.4(2)(多選)某運(yùn)動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者對其身高和臂展進(jìn)行測量(單位:厘米),圖1為選取的15名志愿者身高與臂展的折線圖,圖2為身高與臂展所對應(yīng)的散點圖,并求得其經(jīng)驗回歸方程為y=1.16x-30.75,以下結(jié)論正確的是()A.15名志愿者身高的極差小于臂展的極差B.15名志愿者的身高和臂展具有正相關(guān)關(guān)系C.可估計身高為190厘米的人臂展大約為189.65厘米D.身高相差10厘米的兩人臂展都相差11.6厘米(1)B(2)ABC[(1)由x=1+2+3+4+55=3,y=1.5+1.6+2+2.4+2.55=2,因為經(jīng)驗回歸直線過樣本中心點(x,y),所以2=3b+1.16,b=0.28,②錯誤;可知y隨著x變大而變大,所以變量x(2)對于A,身高極差大約為21,臂展極差大約為26,故結(jié)論正確;對于B,很明顯根據(jù)散點圖以及經(jīng)驗回歸直線得到,身高矮一些,臂展就會短一些,身高高一些,臂展就長些,故結(jié)論正確;對于C,身高為190cm,代入經(jīng)驗回歸方程可得到臂展估計值等于189.65cm,但不是準(zhǔn)確值,故結(jié)論正確;對于D,身高相差10cm的兩人臂展的估計值相差11.6cm,但并不是準(zhǔn)確值,經(jīng)驗回歸直線上的點并不都是準(zhǔn)確的樣本點,故結(jié)論不正確,故選ABC.]判定兩個變量正、負(fù)相關(guān)的方法(1)畫散點圖:點的分布從左下角到右上角,兩個變量正相關(guān);點的分布從左上角到右下角,兩個變量負(fù)相關(guān).(2)相關(guān)系數(shù):r>0時,正相關(guān);r<0時,負(fù)相關(guān).(3)線性經(jīng)驗回歸方程中:b>0時,正相關(guān);b<0時,負(fù)相關(guān).跟進(jìn)訓(xùn)練1(2024·江西宜春一模)給出下列命題,其中正確命題的個數(shù)為()①若樣本數(shù)據(jù)x1,x2,…,x10的方差為4,則數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的方差為8;②經(jīng)驗回歸方程為y=0.6-0.25x時,變量x與y具有負(fù)的線性相關(guān)關(guān)系;③隨機(jī)變量X服從正態(tài)分布N(3,σ2),P(X≤4)=0.64,則P(2≤X≤3)=0.07;④在回歸分析中,對一組給定的樣本數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn)而言,當(dāng)樣本相關(guān)系數(shù)|r|越接近1時,樣本數(shù)據(jù)的線性相關(guān)程度越強(qiáng).A.1個B.2個C.3個D.4個B[對于①,由方差的性質(zhì)可知:數(shù)據(jù)2x1-1,2x2-1,…,2x10-1的方差為22×4=16,①錯誤;對于②,由經(jīng)驗回歸方程知:b=-0.25,則變量x與y具有負(fù)的線性相關(guān)關(guān)系,②正確;對于③,由正態(tài)分布曲線的對稱性可知:P(2≤X≤3)=P(3≤X≤4)=P(X≤4)-P(X≤3)=0.64-0.5=0.14,③錯誤;對于④,由樣本相關(guān)系數(shù)意義可知:|r|越接近1時,樣本數(shù)據(jù)的線性相關(guān)程度越強(qiáng),④正確,故選B.]考點二回歸模型1.一元線性回歸模型與最小二乘法(1)一元線性回歸模型稱Y=bx+a+e,Ee=0,De=σ2為Y關(guān)于x的一元線性回歸模型.其中,Y稱為因變量或響應(yīng)變量,x稱為自變量或解釋變量,a稱為截距參數(shù),b稱為斜率參數(shù);e是Y與bx+(2)最小二乘法將y=bx+a稱為Y關(guān)于x的經(jīng)驗回歸方程,也稱經(jīng)驗回歸函數(shù)或經(jīng)驗回歸公式,其圖形稱為經(jīng)驗回歸直線,這種求經(jīng)驗回歸方程的方法叫做最小二乘法,求得的b,a叫做b,a的最小二乘估計,其中提醒:經(jīng)驗回歸方程一定過點(x,2.刻畫回歸效果的方式(1)殘差圖法在殘差圖中,殘差點比較均勻地落在以橫軸為對稱軸的水平的帶狀區(qū)域中,說明選用的模型比較合適,這樣的帶狀區(qū)域的寬度越窄,說明模型擬合精度越高.(2)殘差平方和法殘差平方和為,殘差平方和越小,模型擬合效果越好.(3)利用R2刻畫擬合效果R2=1,R2越大,模型的擬合效果越好,R2越小,模型的擬合效果越差.一元線性回歸模型[典例2](2023·安徽合肥三模)移動物聯(lián)網(wǎng)廣泛應(yīng)用于生產(chǎn)制造、公共服務(wù)、個人消費(fèi)等領(lǐng)域.如圖是2018-2022年移動物聯(lián)網(wǎng)連接數(shù)w與年份代碼t的散點圖,其中年份2018-2022對應(yīng)的t分別為1~5.(1)根據(jù)散點圖推斷兩個變量是否線性相關(guān).計算樣本相關(guān)系數(shù)(精確到0.01),并推斷它們的相關(guān)程度;(2)求w關(guān)于t的經(jīng)驗回歸方程,并預(yù)測2024年移動物聯(lián)網(wǎng)連接數(shù).附:樣本相關(guān)系數(shù),a=w-bt,[解](1)由題圖可知,兩個變量線性相關(guān).由已知條件可得:t=1+2+3+4+55w=7+12+13+19+245所以(ti=64+9+4+16+81=174,=4+1+0+1+4=10,所以樣本相關(guān)系數(shù)r=411740≈41(2)結(jié)合(1)可知,b=4110=4.1,a=w-b所以經(jīng)驗回歸方程是:w=4.1t+2.7,當(dāng)t=7時,有w=4.1×7+2.7=31.4,即預(yù)測2024年移動物聯(lián)網(wǎng)連接數(shù)為31.4億戶.非線性回歸模型[典例3](2023·廣東廣州二模)一企業(yè)生產(chǎn)某種產(chǎn)品,通過加大技術(shù)創(chuàng)新投入降低了每件產(chǎn)品成本,為了調(diào)查年技術(shù)創(chuàng)新投入x(單位:千萬元)對每件產(chǎn)品成本y(單位:元)的影響,對近10年的年技術(shù)創(chuàng)新投入xi和每件產(chǎn)品成本yi(i=1,2,3,…,10)的數(shù)據(jù)進(jìn)行分析,得到如圖所示的散點圖,并計算得:x=6.8,y=70,1xi=3,1xi2=1.6,(1)根據(jù)散點圖可知,可用函數(shù)模型y=bx+a擬合y與x的關(guān)系,試建立y關(guān)于x(2)已知該產(chǎn)品的年銷售額m(單位:千萬元)與每件產(chǎn)品成本y(單位:元)的關(guān)系為m=-y2500+2y25(注:年利潤=年銷售額-年投入成本)參考公式:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其經(jīng)驗回歸方程v=α+βu的斜率和截距的最小二乘估計公式分別為βα=v-βu.[解](1)令u=1x,則y關(guān)于u的經(jīng)驗回歸方程為y=α+βu由題意可得β=350-210α=y(tǒng)-βu=70-200×0.3=10,則所以y關(guān)于x的非線性經(jīng)驗回歸方程為y=10+200x(2)由y=10+200x可得x=200年利潤M=m-x-10=-y2500+2y25+200y-當(dāng)y=20時,年利潤M取得最大值,此時x=200y-10所以當(dāng)年技術(shù)創(chuàng)新投入為20千萬元時,年利潤M的預(yù)報值取最大值.【教師備用】(2023·山東淄博一模)某電商平臺統(tǒng)計了近七年小家電的年度廣告費(fèi)支出xi(單位:萬元)與年度銷售量yi(單位:萬臺)的數(shù)據(jù),如表所示:年份2017201820192020202120222023廣告費(fèi)支出x/萬元1246111319銷售量y/萬臺1.93.24.04.45.25.35.4其中xiyi=279.4,x(1)若用線性經(jīng)驗回歸模型擬合y與x的關(guān)系,求出y關(guān)于x的經(jīng)驗回歸方程;(2)若用y=c+dx模型擬合得到的非線性經(jīng)驗回歸方程為y=1.63+0.99x,經(jīng)計算線性經(jīng)驗回歸模型及該模型的R2分別為0.75和0.88,請根據(jù)R2的數(shù)值選擇更好的經(jīng)驗回歸模型擬合y與x的關(guān)系,進(jìn)而計算出年度廣告費(fèi)x為何值時,利潤z=200y-x的預(yù)報值最大?參考公式:=[解](1)由題意可得:x=1+2+4+6+11+13+197y=1.9+3.2+4.0+4.4+5.2+5.3+5.47所以=279.4-=0.17,a=y(tǒng)-bx所以y關(guān)于x的經(jīng)驗回歸方程為y=0.17x+2.84.(2)因為0.75<0.88,R2越大,擬合效果越好,所以選用非線性經(jīng)驗回歸方程y=1.63+0.99x更好,z=200(1.63+0.99x)-x=-x+198x+326,z=-(x-99)2+10127,即當(dāng)x=99,x=9801時,利潤的預(yù)報值最大.回歸分析問題的類型及解題方法(1)求經(jīng)驗回歸方程①根據(jù)散點圖判斷兩變量是否線性相關(guān),如不是,應(yīng)通過換元構(gòu)造線性相關(guān).②利用公式,求出回歸系數(shù)b.③待定系數(shù)法:利用經(jīng)驗回歸方程過樣本中心點,求系數(shù)a.(2)利用經(jīng)驗回歸方程進(jìn)行預(yù)測,把經(jīng)驗回歸方程看作一次函數(shù),求函數(shù)值.(3)利用經(jīng)驗回歸方程判斷正、負(fù)相關(guān),決定正相關(guān)還是負(fù)相關(guān)的是系數(shù)b.(4)經(jīng)驗回歸方程的擬合效果,可以利用相關(guān)系數(shù)判斷,當(dāng)|r|越趨近于1時,兩變量的線性相關(guān)性越強(qiáng).跟進(jìn)訓(xùn)練2(1)(2024·江西聯(lián)考模擬)某校對學(xué)生記憶力x和判斷力y進(jìn)行統(tǒng)計分析,所得數(shù)據(jù)如表:記憶力x25689判斷力y78101218則y關(guān)于x的經(jīng)驗回歸方程為()(附:)A.y=-1.4x+19.4 B.y=1.4x+2.6C.y=1.4x-2.6 D.y=-1.4x-19.4(2)(2024·河南聯(lián)考模擬)雨滴在下落過程中,受到的阻力隨速度增大而增大,當(dāng)速度增大到一定程度時,阻力與重力達(dá)到平衡,雨滴開始勻速下落,此時雨滴的下落速度稱為“末速度”.某學(xué)習(xí)小組通過試驗,得到了雨滴的末速度v(單位:m/s)與直徑d(單位:mm)的一組數(shù)據(jù),并繪制成如圖所示的散點圖,則在該試驗條件下,下面四個經(jīng)驗回歸方程類型中最適宜作為雨滴的末速度v與直徑d的經(jīng)驗回歸方程類型的是()A.v=a+bd B.v=a+bC.v=a+bd2 D.v=a+bed(1)B(2)A[(1)由題表中數(shù)據(jù)知,隨著x的增大,y增大,所以x與y正相關(guān),排除AD,又x=2+5+6+8+95(2)由一次函數(shù)、二次函數(shù)及指數(shù)函數(shù)的性質(zhì)可知,BCD不符合散點的變化趨勢,由散點圖分布可知,散點圖分布在一個冪函數(shù)的圖象附近,因此,最適宜作為雨滴的末速度v與直徑d的經(jīng)驗回歸方程類型的是v=a+bd故選A.]考點三獨立性檢驗1.2×2列聯(lián)表與獨立性檢驗(1)分類變量X,Y的2×2列聯(lián)表:XY合計Y=0Y=1X=0aba+bX=1cdc+d合計a+cb+dn=a+b+c+d則χ2=nad(2)利用χ2的取值推斷分類變量X和Y是否獨立的方法稱為χ2獨立性檢驗,讀作“卡方獨立性檢驗”,簡稱獨立性檢驗.(3)χ2獨立性檢驗中幾個常用的小概率值和相應(yīng)的臨界值.α0.10.050.010.0050.001xα2.7063.8416.6357.87910.8282.兩個分類變量之間關(guān)聯(lián)關(guān)系的定性分析的方法(1)利用等高堆積條形圖直觀判斷:如圖,在等高堆積條形圖中,下方同一顏色區(qū)域的兩個高度相差比較明顯時,可以判斷兩個分類變量之間有關(guān)聯(lián)性.(2)頻率分析法:在2×2列聯(lián)表中,aa+b與cc+d或ba+b與d[典例4]為了解某校學(xué)生對科技發(fā)明活動的興趣,隨機(jī)從該校學(xué)生中抽取了100人進(jìn)行調(diào)查,其中女生中對科技發(fā)明活動沒興趣的占女生人數(shù)的14(1)完成2×2列聯(lián)表,依據(jù)小概率值α=0.025的獨立性檢驗,能否認(rèn)為“該校學(xué)生對科技發(fā)明活動是否有興趣與性別有關(guān)”?性別興趣合計有興趣沒興趣男60女合計(2)從樣本中對科技發(fā)明活動沒有興趣的學(xué)生按性別用分層隨機(jī)抽樣的方法抽出6名學(xué)生,記從這6人中隨機(jī)抽取3人,抽到的男生人數(shù)為X,求X的分布列和期望.附:χ2=nad-bc2a+bc+da+cb+d,n=α0.100.050.0250.010xα2.7063.8415.0246.635[解](1)由題述列聯(lián)表可知,男生合計60人,所以女生合計100-60=40(人),由題意,女生中對科技發(fā)明沒興趣、有興趣的分別有40×14男生中對科技發(fā)明沒興趣、有興趣的分別有5人,60-5=55(人),由此可以得到完整列聯(lián)表如下:性別興趣合計有興趣沒興趣男55560女301040合計8515100零假設(shè)H0:該校學(xué)生對科技發(fā)明活動是否有興趣與性別無關(guān).χ2=nad-bc所以依據(jù)小概率值α=0.025的獨立性檢驗,推斷H0不成立,即認(rèn)為“該校學(xué)生對科技發(fā)明活動是否有興趣與性別有關(guān)”.(2)由題意首先抽出的6名學(xué)生中,男生、女生分別有6×55+10=2(人),6×10若從這6人中隨機(jī)抽取3人,抽到的男生人數(shù)為X,則X的所有可能取值為0,1,2,P(X=0)=C20C43P(X=1)=C21C42P(X=2)=C22C41所以X的分布列為X012P131所以E(X)=0×15+1×35+2×【教師備用】(2024·貴州黔東南模擬預(yù)測)二十四節(jié)氣起源于黃河流域,是古代中國勞動人民長期經(jīng)驗的積累和智慧的結(jié)晶.其中“立冬小雪十一月,大雪冬至迎新年”就是描述二十四節(jié)氣農(nóng)歷11月和12月的節(jié)氣口訣.某中學(xué)為調(diào)查本校學(xué)生對二十四節(jié)氣的了解情況,組織測試活動,按照性別分層隨機(jī)抽樣抽取了150名學(xué)生進(jìn)行答題,其中男生占60%,記錄其性別和是否全部答對的情況,得到如圖的等高條形圖.(1)完成下面的2×2列聯(lián)表,依據(jù)小概率值α=0.05的獨立性檢驗,能否認(rèn)為“是否全部答對與性別有關(guān)”?性別對錯合計完全答對部分答對男女合計(2)從參加測試的女生中選取一人繼續(xù)回答甲、乙兩道題目,已知該女生答對甲、乙兩道題目的概率分別是45,34,記該女生答對題目的個數(shù)為附:χ2=nad-bc2a+bc+da+cb+d,其中n=α0.1000.0500.0100.005xα2.7063.8416.6357.879[解](1)按照性別分層隨機(jī)抽樣抽取出的男生人數(shù)為150×60%=90,則抽取的女生人數(shù)為:150-90=60.抽取的女生中全部答對的人數(shù)為:60×0.7=42,部分答對的人數(shù)為:60-42=18,抽取的男生中全部答對的人數(shù)為:90×0.5=45,部分答對的人數(shù)為:90-45=45.性別對錯合計完全答對部分答對男454590女421860合計8763150零假設(shè)H0:是否全部答對與性別無關(guān).χ2=150×45×18依據(jù)小概率值α=0.05的獨立性檢驗,推斷H0不成立,即認(rèn)為“是否全部答對與性別有關(guān)”.(2)由題意可得,X可能取值為0,1,2,P(X=0)=1-45P(X=1)=45×1P(X=2)=45×3則X的分布列為X012P173所以E(X)=0×120+1×720+2×35=獨立性檢驗的一般步驟(1)根據(jù)樣本數(shù)據(jù)完成2×2列聯(lián)表;(2)根據(jù)公式χ2=nad(3)比較χ2與臨界值的大小關(guān)系,作統(tǒng)計推斷.跟進(jìn)訓(xùn)練3第31屆世界大學(xué)生夏季運(yùn)動會于2023年7月28日至8月8日在中國四川省成都市舉行.某體育博主為調(diào)查大學(xué)生對成都大運(yùn)會的了解情況,在某大學(xué)隨機(jī)抽取了200名大學(xué)生(其中男生和女生各100名)提問他們有關(guān)大運(yùn)會的問題,完全答對的認(rèn)為了解大運(yùn)會,否則認(rèn)為不了解大運(yùn)會,得到如下2×2列聯(lián)表:情況性別合計男生女生了解大運(yùn)會7050120不了解大運(yùn)會305080合計100100200(1)根據(jù)2×2列聯(lián)表,依據(jù)小概率值α=0.01的獨立性檢驗,能否認(rèn)為大學(xué)生是否了解大運(yùn)會與性別有關(guān)?(2)將頻率視為概率,用樣本估計總體,若從該校大學(xué)生中隨機(jī)抽取3人調(diào)查他們對大運(yùn)會的了解情況,記抽取的3人中了解大運(yùn)會的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.附:χ2=nad-bc2a+bc+da+cb+d,其中n=α0.0500.0100.001xα3.8416.63510.828[解](1)零假設(shè)H0:大學(xué)生是否了解大運(yùn)會與性別無關(guān).由題意,χ2=200×70×50依據(jù)小概率值α=0.01的獨立性檢驗,推斷H0不成立,即認(rèn)為大學(xué)生是否了解大運(yùn)會與性別有關(guān).(2)從該校大學(xué)生中隨機(jī)抽取1人,其了解大運(yùn)會的概率為120200=35,所以X~B由題意知,X的可能取值為0,1,2,3,P(X=0)=C30×1-353=8125P(X=2)=C32×P(X=3)=C33×所以X的分布列為X0123P8365427所以E(X)=0×8125+1×36125+2×54125+3×27課后習(xí)題(五十八)成對數(shù)據(jù)的統(tǒng)計分析1.(人教A版選擇性必修第三冊P103習(xí)題8.1T1改編)下列四個散點圖中,變量x與y之間具有負(fù)的線性相關(guān)關(guān)系的是() AB CDD[觀察散點圖可知,只有D選項的散點圖表示的是變量x與y之間具有負(fù)的線性相關(guān)關(guān)系.]2.(人教B版選擇性必修第二冊P115練習(xí)BT2改編)某冷飲店日盈利y(單位:百元)與當(dāng)天氣溫x(單位:℃)之間有如下數(shù)據(jù):x/℃1520253035y/百元12245已知y與x之間具有線性相關(guān)關(guān)系,則y與x的經(jīng)驗回歸方程是()A.y=0.2x-2 B.y=0.2x-2.2C.y=0.2x+2 D.y=0.2x+2.2B[經(jīng)驗回歸直線必過樣本中心點,由題意得x=15+20+25+30+355y=1+2+2+4+55=2.8,結(jié)合選項可知,2.8=0.2×25-2.2,即y與x的經(jīng)驗回歸方程是y=0.2x3.(蘇教版選擇性必修第二冊P187本章測試T6改編)動力電池作為新能源汽車的核心部件,在新能源整車成本中占比較高,而碳酸鋰又是動力電池的核心原料.從2020年底開始,碳酸鋰的價格一路水漲船高.如下表所示是2023年某企業(yè)前5個月碳酸鋰的價格與月份的統(tǒng)計數(shù)據(jù):月份代碼x12345碳酸鋰價格y(萬元/kg)0.50.61m1.5根據(jù)表中數(shù)據(jù),得出y關(guān)于x的經(jīng)驗回歸方程為y=0.28x+a,根據(jù)數(shù)據(jù)計算出在樣本點(5,1.5)處的殘差為-0.06,則m=________.1.4[由題意,樣本點(5,1.5)處的殘差為-0.06,則1.5-(0.28×5+a)=-0.06,解得a=0.16.由題表數(shù)據(jù)可得,x=15×y=15×(0.5+0.6+1+m+1.5)=3.6+m則3.6+m5=0.28×3+0.16,解得m4.(人教A版選擇性必修第三冊P133例4改編)為了調(diào)查患肺癌是否與吸煙有關(guān),調(diào)查了100名50歲以下的人,調(diào)查結(jié)果如下表:吸煙肺癌合計肺癌患者非肺癌患者吸煙者20m40不吸煙者n5560合計2575100根據(jù)列聯(lián)表數(shù)據(jù),求得χ2=________(保留3位有效數(shù)字),那么,在犯錯誤的概率不超過________的前提下,認(rèn)為患肺癌與吸煙有關(guān).附:α0.0500.0100.001xα3.8416.63510.828χ2=nad22.20.001[由20+m=40,得m=20.由20+n=25,得n=5.故χ2=100×20×55-20×52所以在犯錯誤的概率不超過0.001的前提下,認(rèn)為患肺癌與吸煙有關(guān).]5.(多選)(2023·安徽黃山三模)下列命題中,正確的是()A.在回歸分析中,可用決定系數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好B.對分類變量x與y的統(tǒng)計量χ2來說,χ2值越小,判斷“x與y有關(guān)系”的把握程度越大C.在回歸模型中,殘差是觀測值y與預(yù)測值y的差,殘差點所在的帶狀區(qū)域?qū)挾仍秸f明模型擬合精度越高D.一組數(shù)據(jù)88,90,90,91,92,93,95,96,98的第75百分位數(shù)為95ACD[對于A,由決定系數(shù)的定義知:R2越大,模型的擬合效果越好,A正確;對于B,由獨立性檢驗的思想知:χ2值越大,“x與y有關(guān)系”的把握程度越大,B錯誤;對于C,殘差點所在的帶狀區(qū)域?qū)挾仍秸?,則殘差平方和越小,模型擬合精度越高,C正確;對于D,∵9×0.75=6.75,∴第75百分位數(shù)為第7個數(shù)據(jù)95,D正確.故選ACD.]6.(多選)如圖,5個數(shù)據(jù)(x,y),去掉點D(3,10)后,下列說法正確的是()A.樣本相關(guān)系數(shù)r變大B.殘差平方和變大C.變量x與變量y呈正相關(guān)D.變量x與變量y的相關(guān)性變強(qiáng)ACD[由散點圖可知,去掉D(3,10)后,y與x的相關(guān)性變強(qiáng),且為正相關(guān),即樣本相關(guān)系數(shù)r變大,故A、C、D正確;樣本相關(guān)系數(shù)r變大,則誤差變小,故B錯誤.]7.(2024·四川成都模擬預(yù)測)某老師為了了解數(shù)學(xué)學(xué)習(xí)成績得分y(單位:分)與每天數(shù)學(xué)學(xué)習(xí)時間x(單位:分鐘)是否存在線性關(guān)系,搜集了100組數(shù)據(jù)(xi=5600,yi=11200),并據(jù)此求得y關(guān)于x的經(jīng)驗回歸方程為y=bA.106B.122C.136D.140C[由題設(shè)可得x=5600100=56,y=11200100=112,故112=b×56+56,故故當(dāng)x=80時,y=80+56=136,故選C.]8.(2024·青島模擬)通過隨機(jī)詢問某中學(xué)110名中學(xué)生是否愛好跳繩,得到如下列聯(lián)表:跳繩性別合計男女愛好402060不愛好203050合計6050110已知χ2=nad-bc2a+bc+da+cb+d,P(χA.愛好跳繩與性別有關(guān)B.愛好跳繩與性別有關(guān),這個結(jié)論犯錯誤的概率不超過0.001C.愛好跳繩與性別無關(guān)D.愛好跳繩與性別無關(guān),這個結(jié)論犯錯誤的概率不超過0.001C[χ2=nad-bc9.(2024·安徽合肥聯(lián)考模擬)為了反映城市的人口數(shù)量x與就業(yè)壓力指數(shù)y之間的變量關(guān)系,研究人員選擇使用非線性回歸模型y=e-910·e710x46810z2c563[x=4+6+8+104=7,z=2+c+5+64=13+c4,依題意,z=lny=而經(jīng)驗回歸方程z=710x-910過點故13+c4=7×710-10.(2024·廣西聯(lián)考模擬)某單位為了調(diào)查性別與對工作的滿意程度是否具有相關(guān)性,隨機(jī)抽取了若干名員工,所得數(shù)據(jù)統(tǒng)計如下表所示,其中x∈N*,且x<20,若依據(jù)小概率值α=0.1的獨立性檢驗,認(rèn)為性別與對工作的滿意程度具有相關(guān)性,則x的值可以是________.(橫線上給出一個滿足條件的x的值即可)性別滿意程度對工作滿意對工作不滿意男5x5x女4x6x附:χ2=nad-bc2a+bc+da+cb+d,其中n=α0.100.050.0250.0100.0050.001xα2.7063.8415.0246.6357.87910.82814(或15,16,17,18,19中任意一個)[χ2=20x·30x解得x>13.3947,因為x∈N*且x<20,所以x=14或x=15或x=16或x=17或x=18或x=19.故答案為:14(或15,16,17,18,19中任意一個).]11.(2023·河南襄城三模)某公司是一家集無人機(jī)特種裝備的研發(fā)、制造與技術(shù)服務(wù)的綜合型科技創(chuàng)新企業(yè),產(chǎn)品主要應(yīng)用于森林消防、物流運(yùn)輸、航空測繪、軍事偵察等領(lǐng)域,獲得市場和廣大觀眾的一致好評,該公司生產(chǎn)的甲、乙兩種類型無人運(yùn)輸機(jī)性能都比較出色,但操控水平需要十分嫻熟,才能發(fā)揮更大的作用.該公司分別收集了甲、乙兩種類型無人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 孕婦用品售后服務(wù)模式創(chuàng)新-洞察分析
- 網(wǎng)絡(luò)廣告?zhèn)惱韱栴}-洞察分析
- 醫(yī)療信息化應(yīng)用分析-洞察分析
- 移動學(xué)習(xí)行為分析-洞察分析
- 藥品質(zhì)量控制方法-洞察分析
- 特色農(nóng)產(chǎn)品冷鏈技術(shù)-洞察分析
- 移動醫(yī)療與遠(yuǎn)程教育-洞察分析
- 虛擬現(xiàn)實在網(wǎng)頁設(shè)計中的優(yōu)勢-洞察分析
- 循環(huán)利用產(chǎn)業(yè)鏈構(gòu)建-洞察分析
- 云端網(wǎng)絡(luò)功能虛擬化-洞察分析
- 鋪貼瓷磚地磚勞務(wù)綜合施工合同
- (整理)RNAV導(dǎo)航技術(shù)課件
- 全國用水總量控制指標(biāo)及跨省江河流域水量分配方案制訂技術(shù)
- 機(jī)械原理課程設(shè)計-沖壓機(jī)構(gòu)及送料機(jī)構(gòu)設(shè)計說明書
- 7.5組態(tài)王使用手冊api接口函數(shù)說明
- 智能化弱電系統(tǒng)投標(biāo)技術(shù)文件
- 醫(yī)務(wù)人員職業(yè)暴露處理流程考核試題與答案
- 年產(chǎn)萬噸甲醇制二甲醚生產(chǎn)工藝的初步設(shè)計說明書
- 人教版高中數(shù)學(xué)必修一教科書課后答案(全)
- touchstone第四冊第3單元
- 膠原蛋白行業(yè)報告
評論
0/150
提交評論