2024屆江蘇省南通市部分校中考數(shù)學(xué)模試卷含解析_第1頁
2024屆江蘇省南通市部分校中考數(shù)學(xué)模試卷含解析_第2頁
2024屆江蘇省南通市部分校中考數(shù)學(xué)模試卷含解析_第3頁
2024屆江蘇省南通市部分校中考數(shù)學(xué)模試卷含解析_第4頁
2024屆江蘇省南通市部分校中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江蘇省南通市部分校中考數(shù)學(xué)模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在某校“我的中國夢”演講比賽中,有9名學(xué)生參加決賽,他們決賽的最終成績各不相同.其中的一名學(xué)生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學(xué)生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)2.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,則AC的長度為()A.2 B.4 C.2 D.43.若代數(shù)式,,則M與N的大小關(guān)系是()A. B. C. D.4.某中學(xué)為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學(xué)類圖書平均每本書價格的1.2倍.已知學(xué)校用12000元購買文學(xué)類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,那么學(xué)校購買文學(xué)類圖書平均每本書的價格是多少元?設(shè)學(xué)校購買文學(xué)類圖書平均每本書的價格是x元,則下面所列方程中正確的是()A. B.C. D.5.下列各數(shù)中負數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)36.已知某新型感冒病毒的直徑約為0.000000823米,將0.000000823用科學(xué)記數(shù)法表示為()A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×1077.最小的正整數(shù)是()A.0B.1C.﹣1D.不存在8.下列判斷正確的是()A.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上B.天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件9.如圖,在△ABC中,∠ACB=90°,點D為AB的中點,AC=3,cosA=,將△DAC沿著CD折疊后,點A落在點E處,則BE的長為()A.5 B.4 C.7 D.510.如圖,3個形狀大小完全相同的菱形組成網(wǎng)格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數(shù)為()A.75° B.60° C.45° D.30°11.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+412.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關(guān)于x的分式方程有增根,則m的值為__________.14.若從-3,-1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的概率是_________.15.如圖,點A為函數(shù)y=(x>0)圖象上一點,連結(jié)OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.16.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當(dāng)△EFC為直角三角形時BE=_____.17.如圖,AB為半圓的直徑,且AB=2,半圓繞點B順時針旋轉(zhuǎn)40°,點A旋轉(zhuǎn)到A′的位置,則圖中陰影部分的面積為_____(結(jié)果保留π).18.計算:2tan三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(2017江蘇省常州市)為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個學(xué)生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖:根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:(1)本次抽樣調(diào)查中的樣本容量是;(2)補全條形統(tǒng)計圖;(3)該校共有2000名學(xué)生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為“打球”的學(xué)生人數(shù).20.(6分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.21.(6分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.22.(8分)如圖,在△ABC中,∠ABC=90°.(1)作∠ACB的平分線交AB邊于點O,再以點O為圓心,OB的長為半徑作⊙O;(要求:不寫做法,保留作圖痕跡)(2)判斷(1)中AC與⊙O的位置關(guān)系,直接寫出結(jié)果.23.(8分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.24.(10分)解方程:=1.25.(10分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.26.(12分)如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.(1)求證:直線CD是⊙O的切線;(2)若DE=2BC,AD=5,求OC的值.27.(12分)計算:2tan45°-(-)o-

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應(yīng)知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.2、C【解析】

根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【詳解】解:∵點A,D分別對應(yīng)數(shù)軸上的實數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運用勾股定理.3、C【解析】∵,∴,∴.故選C.4、B【解析】

首先設(shè)文學(xué)類圖書平均每本的價格為x元,則科普類圖書平均每本的價格為1.2x元,根據(jù)題意可得等量關(guān)系:學(xué)校用12000元購買文學(xué)類圖書的本數(shù)比用這些錢購買科普類圖書的本數(shù)多100本,根據(jù)等量關(guān)系列出方程,【詳解】設(shè)學(xué)校購買文學(xué)類圖書平均每本書的價格是x元,可得:故選B.【點睛】此題主要考查了分式方程的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.5、B【解析】

首先利用相反數(shù),絕對值的意義,乘方計算方法計算化簡,進一步利用負數(shù)的意義判定即可.【詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【點睛】此題考查負數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計算方法計算化簡是解決問題的關(guān)鍵.6、B【解析】分析:絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.詳解:0.000000823=8.23×10-1.故選B.點睛:本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、B【解析】

根據(jù)最小的正整數(shù)是1解答即可.【詳解】最小的正整數(shù)是1.故選B.【點睛】本題考查了有理數(shù)的認識,關(guān)鍵是根據(jù)最小的正整數(shù)是1解答.8、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預(yù)報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.9、C【解析】

連接AE,根據(jù)余弦的定義求出AB,根據(jù)勾股定理求出BC,根據(jù)直角三角形的性質(zhì)求出CD,根據(jù)面積公式出去AE,根據(jù)翻轉(zhuǎn)變換的性質(zhì)求出AF,根據(jù)勾股定理、三角形中位線定理計算即可.【詳解】解:連接AE,∵AC=3,cos∠CAB=,∴AB=3AC=9,由勾股定理得,BC==6,∠ACB=90°,點D為AB的中點,∴CD=AB=,S△ABC=×3×6=9,∵點D為AB的中點,∴S△ACD=S△ABC=,由翻轉(zhuǎn)變換的性質(zhì)可知,S四邊形ACED=9,AE⊥CD,則×CD×AE=9,解得,AE=4,∴AF=2,由勾股定理得,DF==,∵AF=FE,AD=DB,∴BE=2DF=7,故選C.【點睛】本題考查的是翻轉(zhuǎn)變換的性質(zhì)、直角三角形的性質(zhì),翻轉(zhuǎn)變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.10、B【解析】

將圓補充完整,利用圓周角定理找出點E的位置,再根據(jù)菱形的性質(zhì)即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定依據(jù)圓周角定理,根據(jù)圓周角定理結(jié)合圖形找出點E的位置是解題的關(guān)鍵.11、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當(dāng)向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點式進行;12、B【解析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】去分母得:7x+5(x-1)=2m-1,因為分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案為1.14、【解析】分析:根據(jù)題意可以寫出所有的可能性,然后將所有的可能性代入方程組和雙曲線,找出符號要求的可能性,從而可以解答本題.詳解:從﹣3,﹣1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,則(a,b)的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),將上面所有的可能性分別代入關(guān)于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使關(guān)于x,y的二元一次方程組有整數(shù)解,且點(a,b)落在雙曲線上的概率是:.故答案為.點睛:本題考查了列表法與樹狀圖法,解題的關(guān)鍵是明確題意,寫出所有的可能性.15、6【解析】

根據(jù)題意可以分別設(shè)出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關(guān)系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設(shè)點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設(shè)過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式,解題的關(guān)鍵是熟練的掌握等腰三角形的性質(zhì)與反比例函數(shù)的圖象以及三角形的面積公式.16、3或1【解析】

分當(dāng)點F落在矩形內(nèi)部時和當(dāng)點F落在AD邊上時兩種情況求BE得長即可.【詳解】當(dāng)△CEF為直角三角形時,有兩種情況:當(dāng)點F落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當(dāng)△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當(dāng)點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應(yīng)用等知識點,解題時要注意分情況討論.17、【解析】【分析】根據(jù)題意可得出陰影部分的面積等于扇形ABA′的面積加上半圓面積再減去半圓面積.【詳解】∵S陰影=S扇形ABA′+S半圓-S半圓=S扇形ABA′==,故答案為.【點睛】本題考查了扇形面積的計算以及旋轉(zhuǎn)的性質(zhì),熟記扇形面積公式且能準確識圖是解題的關(guān)鍵.18、3+3【解析】

本題涉及零指數(shù)冪、負指數(shù)冪、絕對值、特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【點睛】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)、絕對值等考點的運算三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)100;(2)作圖見解析;(3)1.【解析】試題分析:(1)根據(jù)百分比=計算即可;(2)求出“打球”和“其他”的人數(shù),畫出條形圖即可;(3)用樣本估計總體的思想解決問題即可.試題解析:(1)本次抽樣調(diào)查中的樣本容量=30÷30%=100,故答案為100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,條形圖如圖所示:(3)估計該校課余興趣愛好為“打球”的學(xué)生人數(shù)為2000×40%=1人.20、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關(guān)于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設(shè)Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關(guān)于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經(jīng)過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關(guān)于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設(shè)直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設(shè)點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當(dāng)m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(ⅰ)若DO=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質(zhì)得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數(shù)綜合題,主要考查待定系數(shù)法、三角形全等的判定與性質(zhì)、等腰三角形的性質(zhì)等,能正確地利用數(shù)形結(jié)合思想、分類討論思想等進行解題是關(guān)鍵.21、(1);(2).【解析】

(1)一共4個小球,則任取一個球,共有4種不同結(jié)果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據(jù)一共出現(xiàn)的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結(jié)果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據(jù)表格可得:共有12中等可能的結(jié)果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質(zhì).注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.22、(1)見解析(2)相切【解析】

(1)首先利用角平分線的作法得出CO,進而以點O為圓心,OB為半徑作⊙O即可;(2)利用角平分線的性質(zhì)以及直線與圓的位置關(guān)系進而求出即可.【詳解】(1)如圖所示:;(2)相切;過O點作OD⊥AC于D點,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O與直線AC相切,【點睛】此題主要考查了復(fù)雜作圖以及角平分線的性質(zhì)與作法和直線與圓的位置關(guān)系,正確利用角平分線的性質(zhì)求出d=r是解題關(guān)鍵.23、1.【解析】

根據(jù)二次根式性質(zhì),零指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值依次計算后合并即可.【詳解】解:原式=1﹣1+3﹣4×=1.【點睛】本題考查實數(shù)的運算及特殊角三角形函數(shù)值.24、x=1【解析】

方程兩邊同乘轉(zhuǎn)化為整式方程,解整式方程后進行檢驗即可得.【詳解】解:方程兩邊同乘得:,整理,得,解這個方程得,,經(jīng)檢驗,是增根,舍去,所以,原方程的根是.【點睛】本題考查了解分式方程,解分式方程的關(guān)鍵是方程兩邊同乘分母的最簡公分母化為整式方程然后求解,注意要進行檢驗

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論