江蘇省鎮(zhèn)江市丹徒區(qū)宜城中學(xué)2025屆數(shù)學(xué)九上期末檢測(cè)試題含解析_第1頁(yè)
江蘇省鎮(zhèn)江市丹徒區(qū)宜城中學(xué)2025屆數(shù)學(xué)九上期末檢測(cè)試題含解析_第2頁(yè)
江蘇省鎮(zhèn)江市丹徒區(qū)宜城中學(xué)2025屆數(shù)學(xué)九上期末檢測(cè)試題含解析_第3頁(yè)
江蘇省鎮(zhèn)江市丹徒區(qū)宜城中學(xué)2025屆數(shù)學(xué)九上期末檢測(cè)試題含解析_第4頁(yè)
江蘇省鎮(zhèn)江市丹徒區(qū)宜城中學(xué)2025屆數(shù)學(xué)九上期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省鎮(zhèn)江市丹徒區(qū)宜城中學(xué)2025屆數(shù)學(xué)九上期末檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.二次函數(shù)的圖象如圖,則一次函數(shù)的圖象經(jīng)過(guò)()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限2.在平面直角坐標(biāo)系中,點(diǎn)M(1,﹣2)與點(diǎn)N關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)N的坐標(biāo)為()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)3.如圖,AB是⊙的直徑,AC是⊙的切線,A為切點(diǎn),BC與⊙交于點(diǎn)D,連結(jié)OD.若,則∠AOD的度數(shù)為()A. B. C. D.4.拋物線y=ax2+bx+c(a≠0)形狀如圖,下列結(jié)論:①b>0;②a﹣b+c=0;③當(dāng)x<﹣1或x>3時(shí),y>0;④一元二次方程ax2+bx+c+1=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根.正確的有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)5.某射擊運(yùn)動(dòng)員在同一條件下的射擊成績(jī)記錄如表:射擊次數(shù)1002004001000“射中9環(huán)以上”的次數(shù)78158321801“射中9環(huán)以上”的頻率0.780.790.80250.801根據(jù)表中數(shù)據(jù),估計(jì)這位射擊運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率為()A.0.78 B.0.79 C.0.85 D.0.806.如圖,△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,那么的值為()A. B. C. D.7.下列條件中,能判斷四邊形是菱形的是()A.對(duì)角線互相垂直且相等的四邊形B.對(duì)角線互相垂直的四邊形C.對(duì)角線相等的平行四邊形D.對(duì)角線互相平分且垂直的四邊形8.若二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),坐標(biāo)分別是(x1,0),(x2,0),且.圖象上有一點(diǎn)在軸下方,則下列判斷正確的是()A. B. C. D.9.下列由幾何圖形組合的圖案中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.10.如圖,將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)40°得△A’CB’,若AC⊥A’B’,則∠BAC等于()A.50° B.60° C.70° D.80°11.下列方程是一元二次方程的是()A. B. C. D.12.二次函數(shù)(是常數(shù),)的自變量與函數(shù)值的部分對(duì)應(yīng)值如下表:…012………且當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.有下列結(jié)論:①;②和3是關(guān)于的方程的兩個(gè)根;③.其中,正確結(jié)論的個(gè)數(shù)是()A.0 B.1 C.2 D.3二、填空題(每題4分,共24分)13.如圖,C為半圓內(nèi)一點(diǎn),O為圓心,直徑AB長(zhǎng)為1cm,∠BOC=60°,∠BCO=90°,將△BOC繞圓心O逆時(shí)針旋轉(zhuǎn)至△B′OC′,點(diǎn)C′在OA上,則邊BC掃過(guò)區(qū)域(圖中陰影部分)的面積為_(kāi)________cm1.14.在雙曲線的每個(gè)分支上,函數(shù)值y隨自變量x的增大而增大,則實(shí)數(shù)m的取值范圍是________.15.如圖是圓心角為,半徑為的扇形,其周長(zhǎng)為_(kāi)____________.16.如圖,在△ABC中,AC=6,BC=10,,點(diǎn)D是AC邊上的動(dòng)點(diǎn)(不與點(diǎn)C重合),過(guò)點(diǎn)D作DE⊥BC,垂足為E,點(diǎn)F是BD的中點(diǎn),連接EF,設(shè)CD=x,△DEF的面積為S,則S與x之間的函數(shù)關(guān)系式為_(kāi)______________________.17.拋物線y=x2﹣4x的對(duì)稱軸為直線_____.18.如圖,在菱形ABCD中,E,F(xiàn)分別是AD,BD的中點(diǎn),若EF=2,則菱形ABCD的周長(zhǎng)是__.三、解答題(共78分)19.(8分)如圖所示,在平面直角坐標(biāo)系中,拋物線與軸相交于點(diǎn),點(diǎn),與軸相交于點(diǎn),與拋物線的對(duì)稱軸相交于點(diǎn).(1)求該拋物線的表達(dá)式,并直接寫(xiě)出點(diǎn)的坐標(biāo);(2)過(guò)點(diǎn)作交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);(3)在(2)的條件下,點(diǎn)在射線上,若與相似,求點(diǎn)的坐標(biāo).20.(8分)某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克50元.(1)連續(xù)兩次降價(jià)后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,商場(chǎng)決定采取適當(dāng)?shù)臐q價(jià)措施,但商場(chǎng)規(guī)定每千克漲價(jià)不能超過(guò)8元,若每千克漲價(jià)1元,日銷售量將減少20千克,現(xiàn)該商場(chǎng)要保證每天盈利6000元,那么每千克應(yīng)漲價(jià)多少元?21.(8分)如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過(guò)點(diǎn)C做⊙O的切線,與AE的延長(zhǎng)線交于點(diǎn)D,且AD⊥CD.(1)求證:AC平分∠DAB;(2)若AB=10,CD=4,求DE的長(zhǎng).22.(10分)計(jì)算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°23.(10分)如圖,在中,點(diǎn),分別在,上,,,.求四邊形的面積.24.(10分)如圖,在中,,是斜邊上的中線,以為直徑的分別交、于點(diǎn)、,過(guò)點(diǎn)作,垂足為.(1)若的半徑為,,求的長(zhǎng);(2)求證:與相切.25.(12分)探究問(wèn)題:⑴方法感悟:如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.感悟解題方法,并完成下列填空:將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,點(diǎn)G,B,F(xiàn)在同一條直線上.∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠_________.又AG=AE,AF=AF∴△GAF≌_______.∴_________=EF,故DE+BF=EF.⑵方法遷移:如圖②,將沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.⑶問(wèn)題拓展:如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫(xiě)出你的猜想(不必說(shuō)明理由).26.如圖,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點(diǎn)G,連接CF.(1)求證:△DAE≌△DCF;(2)求證:△ABG∽△CFG;(3)若正方形ABCD的的邊長(zhǎng)為2,G為BC的中點(diǎn),求EF的長(zhǎng).

參考答案一、選擇題(每題4分,共48分)1、C【解析】∵拋物線的頂點(diǎn)在第四象限,∴﹣>1,<1.∴<1,∴一次函數(shù)的圖象經(jīng)過(guò)二、三、四象限.故選C.2、D【解析】解:點(diǎn)M(1,﹣2)與點(diǎn)N關(guān)于原點(diǎn)對(duì)稱,點(diǎn)N的坐標(biāo)為故選D.【點(diǎn)睛】本題考查關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)特征:橫坐標(biāo)和縱坐標(biāo)都互為相反數(shù).3、C【分析】由AC是⊙的切線可得∠CAB=,又由,可得∠ABC=40;再由OD=OB,則∠BDO=40最后由∠AOD=∠OBD+∠OBD計(jì)算即可.【詳解】解:∵AC是⊙的切線∴∠CAB=,又∵∴∠ABC=-=40又∵OD=OB∴∠BDO=∠ABC=40又∵∠AOD=∠OBD+∠OBD∴∠AOD=40+40=80故答案為C.【點(diǎn)睛】本題考查了圓的切線的性質(zhì)、等腰三角形以及三角形外角的概念.其中解題關(guān)鍵是運(yùn)用圓的切線垂直于半徑的性質(zhì).4、B【分析】根據(jù)拋物線的開(kāi)口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)和增減性,以及二次函數(shù)與一元二次方程的關(guān)系逐個(gè)進(jìn)行判斷即可.【詳解】解:由拋物線開(kāi)口向上,可知a>1,對(duì)稱軸偏在y軸的右側(cè),a、b異號(hào),b<1,因此①不符合題意;由對(duì)稱軸為x=1,拋物線與x軸的一個(gè)交點(diǎn)為(3,1),可知與x軸另一個(gè)交點(diǎn)為(﹣1,1),代入得a﹣b+c=1,因此②符合題意;由圖象可知,當(dāng)x<﹣1或x>3時(shí),圖象位于x軸的上方,即y>1.因此③符合題意;拋物線與y=﹣1一定有兩個(gè)交點(diǎn),即一元二次方程ax2+bx+c+1=1(a≠1)有兩個(gè)不相等的實(shí)數(shù)根,因此④符合題意;綜上,正確的有3個(gè),故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)和二次函數(shù)同一元二次方程的關(guān)系,解決本題的關(guān)鍵是正確理解題意,熟練掌握二次函數(shù)的性質(zhì).5、D【分析】根據(jù)大量的實(shí)驗(yàn)結(jié)果穩(wěn)定在0.8左右即可得出結(jié)論.【詳解】∵從頻率的波動(dòng)情況可以發(fā)現(xiàn)頻率穩(wěn)定在0.1附近,∴這名運(yùn)動(dòng)員射擊一次時(shí)“射中9環(huán)以上”的概率是0.1.故選:D.【點(diǎn)睛】本題考查利用頻率估計(jì)概率,在相同的條件下做大量重復(fù)試驗(yàn),一個(gè)事件A出現(xiàn)的次數(shù)和總的試驗(yàn)次數(shù)n之比,稱為事件A在這n次試驗(yàn)中出現(xiàn)的頻率.當(dāng)試驗(yàn)次數(shù)n很大時(shí),頻率將穩(wěn)定在一個(gè)常數(shù)附近.n越大,頻率偏離這個(gè)常數(shù)較大的可能性越?。@個(gè)常數(shù)稱為這個(gè)事件的概率.6、D【分析】把∠A置于直角三角形中,進(jìn)而求得對(duì)邊與斜邊之比即可.【詳解】解:如圖所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故選D.【點(diǎn)睛】本題考查了銳角三角函數(shù)的定義;合理構(gòu)造直角三角形是解題關(guān)鍵.7、D【解析】利用菱形的判定方法對(duì)各個(gè)選項(xiàng)一一進(jìn)行判斷即可.【詳解】解:A、對(duì)角線互相垂直相等的四邊形不一定是菱形,此選項(xiàng)錯(cuò)誤;B、對(duì)角線互相垂直的四邊形不一定是菱形,此選項(xiàng)錯(cuò)誤;C、對(duì)角線相等的平行四邊形也可能是矩形,此選項(xiàng)錯(cuò)誤;D、對(duì)角線互相平分且垂直的四邊形是菱形,此選項(xiàng)正確;故選:D.【點(diǎn)睛】本題考查了菱形的判定,平行四邊形的性質(zhì),熟練運(yùn)用這些性質(zhì)是本題的關(guān)鍵.8、D【分析】根據(jù)拋物線與x軸有兩個(gè)不同的交點(diǎn),根的判別式△>0,再分a>0和a<0兩種情況對(duì)C、D選項(xiàng)討論即可得解.【詳解】A、二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個(gè)交點(diǎn)無(wú)法確定a的正負(fù)情況,故本選項(xiàng)錯(cuò)誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項(xiàng)錯(cuò)誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項(xiàng)錯(cuò)誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號(hào),∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項(xiàng)正確.9、A【分析】根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義逐項(xiàng)判斷即得答案.【詳解】解:A、既是軸對(duì)稱圖形又是中心對(duì)稱圖形,故本選項(xiàng)符合題意;B、是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故本選項(xiàng)不符合題意;C、是中心對(duì)稱圖形,但不是軸對(duì)稱圖形,故本選項(xiàng)不符合題意;D、是中心對(duì)稱圖形,但不是軸對(duì)稱圖形,故本選項(xiàng)不符合題意.故選:A.【點(diǎn)睛】本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的定義,屬于應(yīng)知應(yīng)會(huì)題型,熟知二者的概念是解題關(guān)鍵.10、A【解析】考點(diǎn):旋轉(zhuǎn)的性質(zhì).分析:已知旋轉(zhuǎn)角度,旋轉(zhuǎn)方向,可求∠A′CA,根據(jù)互余關(guān)系求∠A′,根據(jù)對(duì)應(yīng)角相等求∠BAC.解:依題意旋轉(zhuǎn)角∠A′CA=40°,由于AC⊥A′B′,由互余關(guān)系得∠A′=90°-40°=50°,由對(duì)應(yīng)角相等,得∠BAC=∠A′=50°.故選A.11、B【分析】一元二次方程有三個(gè)特點(diǎn):(1)只含有一個(gè)未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對(duì)它進(jìn)行整理.如果能整理為ax2+bx+c=0(a≠0)的形式,則這個(gè)方程就為一元二次方程.【詳解】解:選項(xiàng):是一元一次方程,故不符合題意;選項(xiàng):只含一個(gè)未知數(shù),并且未知數(shù)最高次項(xiàng)是2次,是一元二次方程,故符合題意;選項(xiàng):有兩個(gè)未知數(shù),不是一元二次方程,故不符合題意;選項(xiàng):不是整式方程,故不符合題意;綜上,只有B正確.故選:B.【點(diǎn)睛】本題考查了一元二次方程的定義,屬于基礎(chǔ)知識(shí)的考查,比較簡(jiǎn)單.12、C【分析】首先確定對(duì)稱軸,然后根據(jù)二次函數(shù)的圖像和性質(zhì)逐一進(jìn)行分析即可求解.【詳解】∵由表格可知當(dāng)x=0和x=1時(shí)的函數(shù)值相等都為-2∴拋物線的對(duì)稱軸是:x=-=;∴a、b異號(hào),且b=-a;∵當(dāng)x=0時(shí)y=c=-2∴c∴abc0,故①正確;∵根據(jù)拋物線的對(duì)稱性可得當(dāng)x=-2和x=3時(shí)的函數(shù)值相等都為t∴和3是關(guān)于的方程的兩個(gè)根;故②正確;∵b=-a,c=-2∴二次函數(shù)解析式:∵當(dāng)時(shí),與其對(duì)應(yīng)的函數(shù)值.∴,∴a;∵當(dāng)x=-1和x=2時(shí)的函數(shù)值分別為m和n,∴m=n=2a-2,∴m+n=4a-4;故③錯(cuò)誤故選C.【點(diǎn)睛】本題考查了二次函數(shù)的綜合題型,主要利用了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)的對(duì)稱性,二次函數(shù)與一元二次方程等知識(shí)點(diǎn),要會(huì)利用數(shù)形結(jié)合的思想,根據(jù)給定自變量與函數(shù)值的值結(jié)合二次函數(shù)的性質(zhì)逐條分析給定的結(jié)論是關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)直角三角形的性質(zhì)求出OC、BC,根據(jù)扇形面積公式計(jì)算即可.【詳解】解:∵∠BOC=60°,∠BCO=90°,∴∠OBC=30°,∴OC=OB=1則邊BC掃過(guò)區(qū)域的面積為:故答案為.【點(diǎn)睛】考核知識(shí)點(diǎn):扇形面積計(jì)算.熟記公式是關(guān)鍵.14、m<﹣1【分析】根據(jù)在雙曲線的每個(gè)分支上,函數(shù)值y隨自變量x的增大而增大,可以得到m+1<0,從而可以求得m的取值范圍.【詳解】∵在雙曲線的每個(gè)分支上,函數(shù)值y隨自變量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案為m<﹣1.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的性質(zhì),解題的關(guān)鍵是明確題意,利用反比例函數(shù)的性質(zhì)解答.15、【分析】先根據(jù)弧長(zhǎng)公式算出弧長(zhǎng),再算出周長(zhǎng).【詳解】弧長(zhǎng)=,周長(zhǎng)==.故答案為:.【點(diǎn)睛】本題考查弧長(zhǎng)相關(guān)的計(jì)算,關(guān)鍵在于記住弧長(zhǎng)公式.16、【分析】可在直角三角形CED中,根據(jù)DE、CE的長(zhǎng),求出△BED的面積即可解決問(wèn)題.【詳解】在Rt△CDE中,,CD=x

∴∴,

∴.

∵點(diǎn)F是BD的中點(diǎn),

∴,

故答案為.【點(diǎn)睛】本題考查解直角三角形,三角形的面積等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.17、x=1.【分析】用對(duì)稱軸公式直接求解.【詳解】拋物線y=x1﹣4x的對(duì)稱軸為直線x==﹣=1.故答案為x=1.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的對(duì)稱軸公式x=是本題的解題關(guān)鍵..18、1【解析】試題分析:先利用三角形中位線性質(zhì)得到AB=4,然后根據(jù)菱形的性質(zhì)計(jì)算菱形ABCD的周長(zhǎng).∵E,F(xiàn)分別是AD,BD的中點(diǎn),∴EF為△ABD的中位線,∴AB=2EF=4,∵四邊形ABCD為菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周長(zhǎng)=4×4=1.考點(diǎn):(1)菱形的性質(zhì);(2)三角形中位線定理.三、解答題(共78分)19、(1),點(diǎn);(2)點(diǎn);(3)或【解析】(1)設(shè)拋物線的表達(dá)式為,將A、B、C三點(diǎn)坐標(biāo)代入表達(dá)式,解出a、b、c的值即可得到拋物線表達(dá)式,同理采用待定系數(shù)法求出直線BC解析式,即可求出與對(duì)稱軸的交點(diǎn)坐標(biāo);(2)過(guò)點(diǎn)E作EH⊥AB,垂足為H.先證∠EAH=∠ACO,則tan∠EAH=tan∠ACO=,設(shè)EH=t,則AH=2t,從而可得到E(-2+2t,t),最后,將點(diǎn)E的坐標(biāo)代入拋物線的解析式求解即可;(3)先證明,再根據(jù)與相似分兩種情況討論,建立方程求出AF,利用三角函數(shù)即可求出F點(diǎn)的坐標(biāo).【詳解】(1)設(shè)拋物線的表達(dá)式為.把,和代入得,解得,拋物線的表達(dá)式,∴拋物線對(duì)稱軸為設(shè)直線BC解析式為,把和代入得,解得∴直線BC解析式為當(dāng)時(shí),點(diǎn).(2)如圖,過(guò)點(diǎn)E作EH⊥AB,垂足為H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.設(shè)EH=t,則AH=2t,∴點(diǎn)E的坐標(biāo)為(?2+2t,t).將(?2+2t,t)代入拋物線的解析式得:12(?2+2t)2?(?2+2t)?4=t,解得:t=或t=0(舍去)∴(3)如圖所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分兩種情況討論:①,即,,∵tan∠EAB=∴sin∠EAB=∴F點(diǎn)的縱坐標(biāo)=點(diǎn).②,即,,同①可得F點(diǎn)縱坐標(biāo)=橫坐標(biāo)=點(diǎn).綜合①②,點(diǎn)或.【點(diǎn)睛】本題考查二次函數(shù)的綜合問(wèn)題,需要熟練掌握待定系數(shù)法求函數(shù)解析式,熟練運(yùn)用三角函數(shù)與相似三角形的性質(zhì),作出圖形,數(shù)形結(jié)合是解題的關(guān)鍵.20、(1)20%;(2)每千克應(yīng)漲價(jià)5元.【分析】(1)設(shè)每次下降的百分率為x,根據(jù)相等關(guān)系列出方程,可求每次下降的百分率;(2)設(shè)漲價(jià)y元(0<y≤8),根據(jù)總盈余=每千克盈余×數(shù)量,可列方程,可求解.【詳解】解:(1)設(shè)每次下降的百分率為x根據(jù)題意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合題意舍去)答:每次下降20%(2)設(shè)漲價(jià)y元(0<y≤8)6000=(10+y)(500﹣20y)解得:y1=5,y2=10(不合題意舍去)答:每千克應(yīng)漲價(jià)5元.【點(diǎn)睛】此題主要考查了一元二次方程應(yīng)用,關(guān)鍵是根據(jù)題意找到蘊(yùn)含的相等關(guān)系,列出方程,解答即可.21、(1)見(jiàn)解析;(1)DE=1【分析】(1)連接OC,利用切線的性質(zhì)可得出OC∥AD,再根據(jù)平行線的性質(zhì)得出∠DAC=∠OCA,又因?yàn)椤螼CA=∠OAC,繼而可得出結(jié)論;(1)方法一:連接BE交OC于點(diǎn)H,可證明四邊形EHCD為矩形,再根據(jù)垂徑定理可得出,得出,從而得出,再通過(guò)三角形中位線定理可得出,繼而得出結(jié)論;方法二:連接BC、EC,可證明△ADC∽△ACB,利用相似三角形的性質(zhì)可得出AD=8,再證△DEC∽△DCA,從而可得出結(jié)論;方法三:連接BC、EC,過(guò)點(diǎn)C做CF⊥AB,垂足為F,利用已知條件得出OF=3,再證明△DEC≌△CFB,利用全等三角形的性質(zhì)即可得出答案.【詳解】解:(1)證明:連接OC,∵CD切☉O于點(diǎn)C∴OC⊥CD∵AD⊥CD∴∠D=∠OCD=90°∴∠D+∠OCD=180°∴OC∥AD∴∠DAC=∠OCA∵OA=OC∴∠OCA=∠OAC∴∠DAC=∠OAC∴AC平分DAB(1)方法1:連接BE交OC于點(diǎn)H∵AB是☉O直徑∴∠AEB=90°∴∠DEC=90°∴四邊形EHCD為矩形∴CD=EH=4DE=CH∴∠CHE=90°即OC⊥BH∴EH=BE=4∴BE=8∴在Rt△AEB中AE=6∵EH=BHAO=BO∴OH=AE=3∴CH=1∴DE=1方法1:連接BC、EC∵AB是直徑∴∠ACB=90°∴∠D=∠ACB∵∠DAC=∠CAB∴△ADC∽△ACB∴∠B=∠DCA∴AC1=10·AD∵AC1=AD1+CD1∴10·AD=AD1+16∴AD=1舍AD=8∵四邊形ABCE內(nèi)接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴∠DEC=∠DCA∵∠D=∠D∴△DEC∽△DCA∴∴CD1=AD·DE∴16=8·DE∴DE=1;方法3:連接BC、EC,過(guò)點(diǎn)C做CF⊥AB,垂足為F∵CD⊥AD,∠DAC=∠CAB∴CD=CF=4,∠D=∠CFB=90°∵AB=10∴OC=OB=5∴OF=3∴BF=OB-OF=5-3=1∵四邊形ABCE內(nèi)接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴△DEC≌△CFB∴DE=FB=1.【點(diǎn)睛】本題是一道關(guān)于圓的綜合題目,涉及的知識(shí)點(diǎn)有切線的性質(zhì)、平行線的性質(zhì)、矩形的性質(zhì)、相似三角形的判定及性質(zhì)、全等三角形的判定及性質(zhì)等,綜合利用以上知識(shí)點(diǎn)是解此題的關(guān)鍵.22、(1)2-;(2)-.

【解析】(1)直接利用特殊角的三角函數(shù)值代入即可求出答案;(2)直接利用特殊角的三角函數(shù)值代入即可求出答案.【詳解】解:(1)2sin30°-tan60°+tan45°

=2×-+1

=2-;

(2)tan245°+sin230°-3cos230°

=×12+()2-3×()2

=+-

=-.

故答案為:(1)2-;(2)-.【點(diǎn)睛】本題考查特殊角的三角函數(shù)值,正確記憶相關(guān)數(shù)據(jù)是解題的關(guān)鍵.23、21.【分析】利用平行判定,然后利用相似三角形的性質(zhì)求得,從而求得,使問(wèn)題得解.【詳解】解:∵,∴,.∴.∵,∴.∵,∴.∴.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是本題的解題關(guān)鍵.24、(1);(2)見(jiàn)解析.【分析】(1)根據(jù)直角三角形斜邊的中線等于斜邊的一半,可求得的長(zhǎng)度,再根據(jù)勾股定理,可求得的長(zhǎng)度.根據(jù)圓的直徑對(duì)應(yīng)的圓周角為直角,可知,根據(jù)等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合,可求得的長(zhǎng).(2)根據(jù)三角形中位線平行于底邊,可知,再根據(jù),可知,則可知與相切.【詳解】(1)連接、,,.為的斜邊的中線,由于直角三角形斜邊的中線等于斜邊的一半,,,,為圓的直徑.,即,由于等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合,.(2)、為、的中點(diǎn),由于三角形中位線平行于底邊,,.,,即.又為半徑與圓相切.【點(diǎn)睛】本題綜合考查“直角三角形斜邊中線等于斜邊的一半”,“等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合”,“三角形中位線平行于底邊”等定律,以及圓的切線的判定定理.25、⑴EAF、△EAF、GF;⑵DE+BF=EF;⑶當(dāng)∠B與∠D互補(bǔ)時(shí),可使得DE+BF=EF.【分析】(1)根據(jù)正方形性質(zhì)填空;(2)假設(shè)∠BAD的度數(shù)為,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ABG,此時(shí)AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,結(jié)合正方形性質(zhì)可得DE+BF=EF.⑶根據(jù)題意可得,當(dāng)∠B與∠D互補(bǔ)時(shí),可使得DE+BF=EF.【詳解】⑴EAF、△EAF、GF.⑵DE+BF=EF,理由如下:假設(shè)∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論