2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考數(shù)學(xué)適應(yīng)性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP,CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是()A.60° B.65° C.55° D.50°2.如圖,在平面直角坐標(biāo)系中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B、C在反比例函數(shù)y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.63.如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:①;②當(dāng)0<x<3時,;③如圖,當(dāng)x=3時,EF=;④當(dāng)x>0時,隨x的增大而增大,隨x的增大而減?。渲姓_結(jié)論的個數(shù)是()A.1 B.2 C.3 D.44.如圖,在正方形OABC中,點A的坐標(biāo)是(﹣3,1),點B的縱坐標(biāo)是4,則B,C兩點的坐標(biāo)分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)5.若關(guān)于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣6.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個7.已知x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣38.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.9.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分10.已知是二元一次方程組的解,則的算術(shù)平方根為()A.±2 B. C.2 D.4二、填空題(共7小題,每小題3分,滿分21分)11.空氣質(zhì)量指數(shù),簡稱AQI,如果AQI在0~50空氣質(zhì)量類別為優(yōu),在51~100空氣質(zhì)量類別為良,在101~150空氣質(zhì)量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數(shù)分布直方圖如圖所示.已知每天的AQI都是整數(shù),那么空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為______%.12.在直角坐標(biāo)平面內(nèi)有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.13.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.14.如圖,在Rt△ABC中,E是斜邊AB的中點,若AB=10,則CE=____.15.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).16.若一條直線經(jīng)過點(1,1),則這條直線的解析式可以是(寫出一個即可)______.17.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設(shè)點O落在點P處,如果當(dāng)OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.19.(5分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.20.(8分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.(1)當(dāng)時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標(biāo);(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標(biāo).21.(10分)已知AC=DC,AC⊥DC,直線MN經(jīng)過點A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;(3)在MN繞點A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時,直接寫出BC的值.22.(10分)已知:如圖所示,在中,,,求和的度數(shù).23.(12分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當(dāng)圖中陰影部分的面積最小值時,求點M的坐標(biāo);(3)在圖乙中,點C和點C1關(guān)于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標(biāo).24.(14分)如圖,在邊長為1個單位長度的小正方形網(wǎng)格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格中畫出△A2B2C2.(3)求△CC1C2的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:根據(jù)五邊形的內(nèi)角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度數(shù),再根據(jù)角平分線的定義可得∠PDC與∠PCD的角度和,進一步求得∠P的度數(shù).解:∵五邊形的內(nèi)角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分線在五邊形內(nèi)相交于點O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故選A.考點:多邊形內(nèi)角與外角;三角形內(nèi)角和定理.2、B【解析】

作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設(shè)CE=x,則BD=2x,∴C的橫坐標(biāo)為,B的橫坐標(biāo)為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點睛:本題是反比例函數(shù)與幾何的綜合題,熟知反比例函數(shù)的圖象上點的特征和相似三角形的判定和性質(zhì)是解題的關(guān)鍵.3、C【解析】試題分析:對于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項①正確;∴C(2,2),把C坐標(biāo)代入反比例解析式得:k=4,即,由函數(shù)圖象得:當(dāng)0<x<2時,,選項②錯誤;當(dāng)x=3時,,,即EF==,選項③正確;當(dāng)x>0時,隨x的增大而增大,隨x的增大而減小,選項④正確,故選C.考點:反比例函數(shù)與一次函數(shù)的交點問題.4、A【解析】

作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標(biāo)是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標(biāo)是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標(biāo)與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.5、B【解析】

解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關(guān)于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當(dāng)x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.6、C【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、A【解析】

根據(jù)一元二次方程根與系數(shù)的關(guān)系和整體代入思想即可得解.【詳解】∵x1,x2是關(guān)于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數(shù)的關(guān)系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,那么x1+x2=-ba,x1x2=8、B【解析】

俯視圖是從上面看幾何體得到的圖形,據(jù)此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.9、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.10、C【解析】二元一次方程組的解和解二元一次方程組,求代數(shù)式的值,算術(shù)平方根.【分析】∵是二元一次方程組的解,∴,解得.∴.即的算術(shù)平方根為1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、80【解析】【分析】先求出AQI在0~50的頻數(shù),再根據(jù)%,求出百分比.【詳解】由圖可知AQI在0~50的頻數(shù)為10,所以,空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數(shù)據(jù)的分析.解題關(guān)鍵點:從統(tǒng)計圖獲取信息,熟記百分比計算方法.12、【解析】

根據(jù)勾股定理求出OA的長度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標(biāo)為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.13、【解析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.14、5【解析】試題分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得CE=AB=5.考點:直角三角形斜邊上的中線.15、>【解析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數(shù)的性質(zhì),點M、N在對稱軸的右側(cè),y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,二次函數(shù)的性質(zhì),求得對稱軸,掌握二次函數(shù)圖象的性質(zhì)解決問題.16、y=x.(答案不唯一)【解析】

首先設(shè)一次函數(shù)解析式為:y=kx+b(k≠0),b取任意值后,把(1,1)代入所設(shè)的解析式里,即可得到k的值,進而得到答案.【詳解】解:設(shè)直線的解析式y(tǒng)=kx+b,令b=0,將(1,1)代入,得k=1,此時解析式為:y=x.由于b可為任意值,故答案不唯一.故答案為:y=x.(答案不唯一)【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式.17、【解析】

由折疊的性質(zhì)可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設(shè)MN與OP交于點E,

∵點O、P的距離為4,

∴OP=4

∵折疊

∴MN⊥OP,EO=EP=2,

在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、﹣2【解析】【分析】先利用完全平方公式、平方差公式進行展開,然后合并同類項,最后代入x、y的值進行計算即可得.【詳解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,當(dāng)x=+1,y=﹣1時,原式=2×(+1)×(﹣1)=2×(3﹣2)=﹣2.【點睛】本題考查了整式的混合運算——化簡求值,熟練掌握完全平方公式、平方差公式是解題的關(guān)鍵.19、【解析】

先根據(jù)平行線的性質(zhì)證明△ADE∽△FGH,再由線段DF=BG、FE=HC及BG︰GH︰HC=2︰4︰1,可求得的值.【詳解】解:∵DE∥BC,∴∠ADE=∠B,∵FG∥AB,∴∠FGH=∠B,∴∠ADE=∠FGH,同理:∠AED=∠FHG,∴△ADE∽△FGH,∴,∵DE∥BC,F(xiàn)G∥AB,∴DF=BG,同理:FE=HC,∵BG︰GH︰HC=2︰4︰1,∴設(shè)BG=2k,GH=4k,HC=1k,∴DF=2k,F(xiàn)E=1k,∴DE=5k,∴.【點睛】本題考查了平行線的性質(zhì)和三角形相似的判定和相似比.20、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標(biāo),然后求出A、B、C的坐標(biāo),然后根據(jù)即可得出結(jié)論;(2)設(shè)點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過點D作DE⊥x軸于點E當(dāng)時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設(shè)點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設(shè)點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據(jù)題意得:解得:【點睛】此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.21、(1)相等或互補;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】

(1)分為點C,D在直線MN同側(cè)和點C,D在直線MN兩側(cè),兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當(dāng)點C,D在直線MN同側(cè),當(dāng)點C,D在直線MN兩側(cè),兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補;理由:當(dāng)點C,D在直線MN同側(cè)時,如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當(dāng)點C,D在直線MN兩側(cè)時,如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數(shù)量是相等或互補;(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當(dāng)點C,D在直線MN同側(cè)時,如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當(dāng)點C,D在直線MN兩側(cè)時,如圖2﹣1,過點D作DG⊥CB交CB的延長線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【點睛】本題考查了三角形中的邊長關(guān)系,等腰直角三角形的性質(zhì),中等難度,分類討論與作輔助線是解題關(guān)鍵.22、,.【解析】

根據(jù)等腰三角形的性質(zhì)即可求出∠B,再根據(jù)三角形外角定理即可求出∠C.【詳解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【點睛】此題主要考查等腰三角形的性質(zhì),解題的關(guān)鍵是熟知等邊對等角.23、(1)y=12x2-x-4(2)點M的坐標(biāo)為(2,-4)(3)-83【解析】【分析】(1)設(shè)交點式y(tǒng)=a(x+2)(x-4),然后把C點坐標(biāo)代入求出a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論