重慶市六校2025屆九年級數(shù)學第一學期期末復(fù)習檢測試題含解析_第1頁
重慶市六校2025屆九年級數(shù)學第一學期期末復(fù)習檢測試題含解析_第2頁
重慶市六校2025屆九年級數(shù)學第一學期期末復(fù)習檢測試題含解析_第3頁
重慶市六校2025屆九年級數(shù)學第一學期期末復(fù)習檢測試題含解析_第4頁
重慶市六校2025屆九年級數(shù)學第一學期期末復(fù)習檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

重慶市六校2025屆九年級數(shù)學第一學期期末復(fù)習檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,以點A為中心,把△ABC逆時針旋轉(zhuǎn)m°,得到△AB′C′(點B、C的對應(yīng)點分別為點B′、C′),連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為()A. B. C. D.2.如圖,是的外接圓,,點是外一點,,,則線段的最大值為()A.9 B.4.5 C. D.3.如圖,在中,,,以為斜邊向上作,.連接,若,則的長度為()A.或 B.3或4 C.或 D.2或44.已知二次函數(shù)圖象如圖所示,對稱軸為過點且平行于軸的直線,則下列結(jié)論中正確的是()A. B. C. D.5.一個幾何體由大小相同的小方塊搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則從正面看到幾何體的形狀圖是()A. B. C. D.6.已知在直角坐標平面內(nèi),以點P(﹣2,3)為圓心,2為半徑的圓P與x軸的位置關(guān)系是()A.相離 B.相切C.相交 D.相離、相切、相交都有可能7.如圖,⊙O的半徑為2,△ABC為⊙O內(nèi)接等邊三角形,O為圓心,OD⊥AB,垂足為D.OE⊥AC,垂足為E,連接DE,則DE的長為()A.1 B. C. D.28.為了比較甲乙兩足球隊的身高誰更整齊,分別量出每人身高,發(fā)現(xiàn)兩隊的平均身高一樣,甲、乙兩隊的方差分別是1.7、2.4,則下列說法正確的是()A.甲、乙兩隊身高一樣整齊 B.甲隊身高更整齊C.乙隊身高更整齊 D.無法確定甲、乙兩隊身高誰更整齊9.點P1(﹣1,),P2(3,),P3(5,)均在二次函數(shù)的圖象上,則,,的大小關(guān)系是()A. B. C. D.10.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結(jié)論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n二、填空題(每小題3分,共24分)11.“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”這段話摘自《九章算術(shù)》,意思是說:如圖,矩形ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E、南門點F分別是AB,AD的中點,EG⊥AB,F(xiàn)E⊥AD,EG=15里,HG經(jīng)過A點,則FH=__里.12.如圖,邊長為2的正方形ABCD,以AB為直徑作⊙O,CF與⊙O相切于點E,與AD交于點F,則△CDF的面積為________________13.如圖,中,,是線段上的一個動點,以為直徑畫分別交于連接,則線段長度的最小值為__________.14.如圖,反比例函數(shù)y=的圖象經(jīng)過?ABCD對角線的交點P,已知點A,C,D在坐標軸上,BD⊥DC,?ABCD的面積為6,則k=_____.15.從一個不透明的口袋中隨機摸出一球,再放回袋中,不斷重復(fù)上述過程,一共摸了150次,其中有50次摸到黑球,已知口袋中僅有黑球5個和白球若干個,這些球除顏色外,其他都一樣,由此估計口袋中有___個白球.16.平面直角坐標系內(nèi)的三個點A(1,-3)、B(0,-3)、C(2,-3),___確定一個圓.(填“能”或“不能”)17.如圖,在以A為直角頂點的等腰直角三角形紙片ABC中,將B角折起,使點B落在AC邊上的點D(不與點A,C重合)處,折痕是EF.如圖1,當CD=AC時,tanα1=;如圖2,當CD=AC時,tanα2=;如圖3,當CD=AC時,tanα3=;……依此類推,當CD=AC(n為正整數(shù))時,tanαn=_____.18.反比例函數(shù)的圖象具有下列特征:在所在象限內(nèi),的值隨值增大而減?。敲吹娜≈捣秶莀____________.三、解答題(共66分)19.(10分)在△ABC中,AD、CE分別是△ABC的兩條高,且AD、CE相交于點O,試找出圖中相似的三角形,并選出一組給出證明過程.20.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D,過點D作AC的垂線交AC于點E,交AB的延長線于點F.(1)求證:DE與⊙O相切;(2)若CD=BF,AE=3,求DF的長.21.(6分)計算:(1)(2)解方程:22.(8分)已知關(guān)于的一元二次方程.(1)若此方程有兩個實數(shù)根,求的最小整數(shù)值;(2)若此方程的兩個實數(shù)根為,,且滿足,求的值.23.(8分)“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達到196畝.(1)求該基地這兩年“早黑寶”種植面積的平均增長率;(2)市場調(diào)查發(fā)現(xiàn),當“早黑寶”的售價為20元/千克時,每天能售出200千克,售價每降價1元,每天可多售出50千克,為了推廣宣傳,基地決定降價促銷,同時減少庫存,已知該基地“早黑寶”的平均成本價為12元/千克,若使銷售“早黑寶”每天獲利1750元,則售價應(yīng)降低多少元?24.(8分)直線與雙曲線只有一個交點,且與軸、軸分別交于、兩點,AD垂直平分,交軸于點.(1)求直線、雙曲線的解析式;(2)過點作軸的垂線交雙曲線于點,求的面積.25.(10分)計算的值.26.(10分)如圖,在平面直角坐標系中,的三個頂點都在格點上,點的坐標為,請解答下列問題:(1)畫出關(guān)于軸對稱的,點的坐標為______;(2)在網(wǎng)格內(nèi)以點為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點的坐標為,則兩次變換后對應(yīng)點的坐標為______.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得、,利用等腰三角形的性質(zhì)可求得,再根據(jù)平行線的性質(zhì)得出,最后由角的和差得出結(jié)論.【詳解】解:∵以點為中心,把逆時針旋轉(zhuǎn),得到∴,∴∵∴∴故選:B【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等;也考查了等腰三角形的性質(zhì),三角形的內(nèi)角和定理,平行線的性質(zhì)及角的和差.2、C【分析】連接OB、OC,如圖,則△OBC是頂角為120°的等腰三角形,將△OPC繞點O順時針旋轉(zhuǎn)120°到△OMB的位置,連接MP,則∠POM=120°,MB=PC=3,OM=OP,根據(jù)等腰三角形的性質(zhì)和銳角三角函數(shù)可得,于是求OP的最大值轉(zhuǎn)化為求PM的最大值,因為,所以當P、B、M三點共線時,PM最大,據(jù)此求解即可.【詳解】解:連接OB、OC,如圖,則OB=OC,∠BOC=2∠A=120°,將△OPC繞點O順時針旋轉(zhuǎn)120°到△OMB的位置,連接MP,則∠POM=120°,MB=PC=3,OM=OP,過點O作ON⊥PM于點N,則∠MON=60°,MN=PM,在直角△MON中,,∴,∴當PM最大時,OP最大,又因為,所以當P、B、M三點共線時,PM最大,此時PM=3+6=9,所以O(shè)P的最大值是:.故選:C.【點睛】本題考查了圓周角定理、等腰三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、解直角三角形和兩點之間線段最短等知識,具有一定的難度,將△OPC繞點O順時針旋轉(zhuǎn)120°到△OMB的位置,將求OP的最大值轉(zhuǎn)化為求PM的最大值是解題的關(guān)鍵.3、A【分析】利用A、B、C、D四點共圓,根據(jù)同弧所對的圓周角相等,得出,再作,設(shè)AE=DE=x,最后利用勾股定理求解即可.【詳解】解:如圖所示,∵△ABC、△ABD都是直角三角形,∴A,B,C,D四點共圓,∵AC=BC,∴,∴,作于點E,∴△AED是等腰直角三角形,設(shè)AE=DE=x,則,∵CD=7,CE=7-x,∵,∴AC=BC=5,在Rt△AEC中,,∴解得,x=3或x=4,∴或.故答案為:A.【點睛】本題考查的知識點是勾股定理的綜合應(yīng)用,解題的關(guān)鍵是根據(jù)題目得出四點共圓,作出合理輔助線,在圓內(nèi)利用勾股定理求解.4、D【分析】由拋物線開口向上,與y軸交于負半軸,對稱軸在y軸左側(cè)即可判斷a、c、b的符號,進而可判斷A項;拋物線的對稱軸為直線x=﹣,結(jié)合拋物線的對稱軸公式即可判斷B項;由圖象可知;當x=1時,a+b+c<0,再結(jié)合B項的結(jié)論即可判斷C項;由(1,0)與(﹣2,0)關(guān)于拋物線的對稱軸對稱,可知當x=-2時,y<0,進而可判斷D項.【詳解】解:A、∵拋物線開口向上,與y軸交于負半軸,對稱軸在y軸左側(cè),∴a>0,c<0,<0,∴b>0,∴abc<0,所以本選項錯誤;B、∵拋物線的對稱軸為直線x=﹣,∴,∴a﹣b=0,所以本選項錯誤;C、∵當x=1時,a+b+c<0,且a=b,∴,所以本選項錯誤;D、∵(1,0)與(﹣2,0)關(guān)于拋物線的對稱軸對稱,且當x=1時,y<0,∴當x=-2時,y<0,即4a﹣2b+c<0,∴,所以本選項正確.故選:D.【點睛】本題考查了二次函數(shù)的圖象與性質(zhì),屬于常考題型,熟練掌握拋物線的性質(zhì)是解題關(guān)鍵.5、D【解析】試題分析:根據(jù)所給出的圖形和數(shù)字可得:主視圖有3列,每列小正方形數(shù)目分別為3,2,3,則符合題意的是D;故選D.考點:1.由三視圖判斷幾何體;2.作圖-三視圖.6、A【解析】先求出點P到x軸的距離,再根據(jù)直線與圓的位置關(guān)系得出即可.【詳解】解:點P(-2,3)到x軸的距離是3,3>2,所以圓P與軸的位置關(guān)系是相離,故選A.【點睛】本題考查了坐標與圖形的性質(zhì)和直線與圓的位置關(guān)系等知識點,能熟記直線與圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵.7、C【分析】過O作于H,得到,連接OB,由為內(nèi)接等邊三角形,得到,求得,根據(jù)垂徑定理和三角形的中位線定理即可得到結(jié)論.【詳解】解:過作于,,連接,為內(nèi)接等邊三角形,,,,,,,,,,故選:.【點睛】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱巳切沃形痪€定理.8、B【解析】根據(jù)方差的意義可作出判斷,方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲隊成員身高更整齊;故選B.【點睛】此題考查方差,掌握波動越小,數(shù)據(jù)越穩(wěn)定是解題關(guān)鍵9、D【解析】試題分析:∵,∴對稱軸為x=1,P2(3,),P3(5,)在對稱軸的右側(cè),y隨x的增大而減小,∵3<5,∴,根據(jù)二次函數(shù)圖象的對稱性可知,P1(﹣1,)與(3,)關(guān)于對稱軸對稱,故,故選D.考點:二次函數(shù)圖象上點的坐標特征.10、D【解析】根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、1.1【解析】∵EG⊥AB,F(xiàn)H⊥AD,HG經(jīng)過A點,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得FH=1.1里.故答案為1.1.12、【分析】首先判斷出AB、BC是⊙O的切線,進而得出FC=AF+DC,設(shè)AF=x,再利用勾股定理求解即可.【詳解】解:∵∠DAB=∠ABC=90°,

∴AB、BC是⊙O的切線,

∵CF是⊙O的切線,

∴AF=EF,BC=EC,

∴FC=AF+DC,

設(shè)AF=x,則,DF=2-x,∴CF=2+x,

在RT△DCF中,CF2=DF2+DC2,

即(2+x)2=(2-x)2+22,解得x=,

∴DF=2-=,∴,故答案為:.【點睛】本題考查了正方形的性質(zhì),切線長定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握性質(zhì)定理是解題的關(guān)鍵.13、.【詳解】解:如圖,連接,過點作,垂足為∵,∴.由∵,∴.而,則.在中,,∴.所以當最小即半徑最小時,線段長度取到最小值,故當時,線段長度最小.在中,,則此時的半徑為1,∴.故答案為:.14、-3【解析】分析:由平行四邊形面積轉(zhuǎn)化為矩形BDOA面積,在得到矩形PDOE面積,應(yīng)用反比例函數(shù)比例系數(shù)k的意義即可.詳解:過點P做PE⊥y軸于點E,∵四邊形ABCD為平行四邊形∴AB=CD又∵BD⊥x軸∴ABDO為矩形∴AB=DO∴S矩形ABDO=S?ABCD=6∵P為對角線交點,PE⊥y軸∴四邊形PDOE為矩形面積為3即DO?EO=3∴設(shè)P點坐標為(x,y)k=xy=﹣3故答案為:﹣3點睛:本題考查了反比例函數(shù)比例系數(shù)k的幾何意義以及平行四邊形的性質(zhì).15、1【分析】先由“頻率=頻數(shù)÷數(shù)據(jù)總數(shù)”計算出頻率,再由簡單事件的概率公式列出方程求解即可.【詳解】解:摸了150次,其中有50次摸到黑球,則摸到黑球的頻率是,設(shè)口袋中大約有x個白球,則,解得.故答案為:1.【點睛】考查利用頻率估計概率.大量反復(fù)試驗下頻率穩(wěn)定值即概率.關(guān)鍵是得到關(guān)于黑球的概率的等量關(guān)系.16、不能【分析】根據(jù)三個點的坐標特征得到它們共線,于是根據(jù)確定圓的條件可判斷它們不能確定一個圓.【詳解】解:∵B(0,-3)、C(2,-3),∴BC∥x軸,而點A(1,-3)與C、B共線,∴點A、B、C共線,∴三個點A(1,-3)、B(0,-3)、C(2,-3)不能確定一個圓.故答案為:不能.【點睛】本題考查了確定圓的條件:不在同一直線上的三點確定一個圓.17、【分析】探究規(guī)律,利用規(guī)律解決問題即可.【詳解】觀察可知,正切值的分子是3,5,7,9,…,2n+1,分母與勾股數(shù)有關(guān)系,分別是勾股數(shù)3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中間一個.當,將故答案為:【點睛】本題考查規(guī)律型問題,解題的關(guān)鍵是學會探究規(guī)律的方法,屬于中考常考題型.18、【分析】直接利用當k>1,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減小;當k<1,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大,進而得出答案.【詳解】解:∵反比例函數(shù)的圖象在所在象限內(nèi),y的值隨x值的增大而減小,

∴k>1.

故答案為:k>1.【點睛】此題主要考查了反比例函數(shù)的性質(zhì),掌握基本性質(zhì)是解題的關(guān)鍵.三、解答題(共66分)19、△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA,證明見解析【分析】由題意直接根據(jù)相似三角形的判定方法進行分析即可得出答案.【詳解】解:圖中相似的三角形有:△ABD∽△CBE,△ODC∽△BEC,△OEA∽△BDA,△ODC∽△OEA.∵AD、CE分別是△ABC的兩條高,∴∠ADB=∠CDA=∠CEB=∠AEC=90°,∴∠B+∠BCE=90°,∠B+∠BAD=90°,∴∠BAD=∠BCE,∵∠EBC=∠ABD,∴△ABD∽CBE.【點睛】本題考查相似三角形的判定.注意掌握相似三角形的判定以及數(shù)形結(jié)合思想的應(yīng)用.20、(1)見解析;(2)DF=2.【分析】(1)連接OD,求出AC∥OD,求出OD⊥DE,根據(jù)切線的判定得出即可;

(2)求出∠1=∠2=∠F=30°,求出AD=DF,解直角三角形求出AD,即可求出答案.【詳解】(1)證明:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,又∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠2=∠ADO,∴∠1=∠ADO,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∴OD⊥ED,∵OD過O,∴DE與⊙O相切;(2)解:∵AB=AC,AD⊥BC,∴∠1=∠2,CD=BD,∵CD=BF,∴BF=BD,∴∠3=∠F,∴∠4=∠3+∠F=2∠3,∵OB=OD,∴∠ODB=∠4=2∠3,∵∠ODF=90°,∴∠3=∠F=30°,∠4=∠ODB=60°,∵∠ADB=90°,∴∠2=∠1=30°,∴∠2=∠F,∴DF=AD,∵∠1=30°,∠AED=90°,∴AD=2ED,∵AE2+DE2=AD2,AE=3,∴AD=2,∴DF=2.【點睛】本題考查了等腰三角形的性質(zhì),三角形的外角性質(zhì),圓周角定理,切線的判定定理,解直角三角形等知識點,能綜合運用定理進行推理是解此題的關(guān)鍵.21、(1);(2)【分析】(1)由題意利用乘方運算法則并代入特殊三角函數(shù)值進行計算即可;(2)根據(jù)題意直接利用因式分解法進行方程的求解即可.【詳解】解:(1)(2),解得.【點睛】本題考查實數(shù)的混合運算以及解一元二次方程,熟練掌握乘方運算法則和特殊三角函數(shù)值以及利用因式分解法解方程是解題的關(guān)鍵.22、(1)-4;(2)【分析】(1)根據(jù)題意利用判別式的意義進行分析,然后解不等式得到m的范圍,再在此范圍內(nèi)找出最小整數(shù)值即可;(2)由題意利用根與系數(shù)的關(guān)系得到,,進而再利用,接著解關(guān)于m的方程確定m的值.【詳解】解:(1)方程有兩個實數(shù)根,即的最小整數(shù)值為.(2)由根與系數(shù)的關(guān)系得:,由得:,.【點睛】本題考查根與系數(shù)的關(guān)系以及根的判別式,注意掌握若,是一元二次方程的兩根時,則有.23、(1)該基地這兩年“早黑寶”種植面積的平均增長率為40%.(2)售價應(yīng)降低3元【分析】(1)設(shè)該基地這兩年“早黑寶”種植面積的平均增長率為x,根據(jù)題意列出關(guān)于x的一元二次方程,求解方程即可;(2)設(shè)售價應(yīng)降低y元,則每天售出(200+50y)千克,根據(jù)題意列出關(guān)于y的一元二次方程,求解方程即可.【詳解】(1)設(shè)該基地這兩年“早黑寶”種植面積的平均增長率為,根據(jù)題意得解得,(不合題意,舍去)答:該基地這兩年“早黑寶”種植面積的平均增長率為40%.(2)設(shè)售價應(yīng)降低元,則每天可售出千克根據(jù)題意,得整理得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論