版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.當(dāng)壓力F(N)一定時,物體所受的壓強p(Pa)與受力面積S(m2)的函數(shù)關(guān)系式為P=(S≠0),這個函數(shù)的圖象大致是()A. B.C. D.2.已知xy=1A.32 B.13 C.23.如圖,在直角坐標(biāo)系中,有兩點A(6,3)、B(6,0).以原點O為位似中心,相似比為,在第一象限內(nèi)把線段AB縮小后得到線段CD,則點C的坐標(biāo)為()A.(2,1) B.(2,0) C.(3,3) D.(3,1)4.如圖,在中,D在AC邊上,,O是BD的中點,連接AO并延長交BC于E,則()A.1:2 B.1:3 C.1:4 D.2:35.如圖,四邊形ABCD和四邊形A′B′C′D′是以點O為位似中心的位似圖形,若OA:OA′=2:3,四邊形ABCD的面積等于4,則四邊形A′B′C′D′的面積為()A.3 B.4 C.6 D.96.計算的值是()A. B. C. D.7.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中數(shù)字表示該位置小正方體的個數(shù),則該幾何體的左視圖是()A. B. C. D.8.如圖1,在菱形ABCD中,∠A=120°,點E是BC邊的中點,點P是對角線BD上一動點,設(shè)PD的長度為x,PE與PC的長度和為y,圖2是y關(guān)于x的函數(shù)圖象,其中H是圖象上的最低點,則a+b的值為()A.7 B. C. D.9.在課外實踐活動中,甲、乙、丙、丁四個小組用投擲一元硬幣的方法估算正面朝上的概率,其實驗次數(shù)分別為10次、50次、100次,200次,其中實驗相對科學(xué)的是()A.甲組 B.乙組 C.丙組 D.丁組10.已知二次函數(shù)y=2(x﹣3)2+1.下列說法:①其圖象的開口向下;②其圖象的對稱軸為直線x=﹣3;③其圖象頂點坐標(biāo)為(3,﹣1);④當(dāng)x<3時,y隨x的增大而減小.則其中說法正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,在直角坐標(biāo)系中,點,點,過點的直線垂直于線段,點是直線上在第一象限內(nèi)的一動點,過點作軸,垂足為,把沿翻折,使點落在點處,若以,,為頂點的三角形與△ABP相似,則滿足此條件的點的坐標(biāo)為__________.12.如圖,是以點為圓心的圓形紙片的直徑,弦于點,.將陰影部分沿著弦翻折壓平,翻折后,弧對應(yīng)的弧為,則點與弧所在圓的位置關(guān)系為____________.13.如圖,,,與交于點,則是相似三角形共有__________對.14.如圖,△ABC與△A′B′C′是位似圖形,且頂點都在格點上,則位似中心的坐標(biāo)是__.15.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB、BD于M、N兩點,若AM=2,則線段ON的長為_____.16.從甲、乙、丙、丁4名三好學(xué)生中隨機抽取2名學(xué)生擔(dān)任升旗手,則抽取的2名學(xué)生是甲和乙的概率為
________.17.定義符號max{a,b}的含義為:當(dāng)a≥b時,max{a,b}=a;當(dāng)a<b時,max{a,b}=b.如max{1,﹣3}=1,則max{x2+2x+3,﹣2x+8}的最小值是_____.18.已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如表,x6.176.186.196.20y﹣0.03﹣0.010.020.04則方程ax2+bx+c=0的一個解的范圍是_____.三、解答題(共66分)19.(10分)(1)如圖1,O是等邊△ABC內(nèi)一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:①旋轉(zhuǎn)角的度數(shù);線段OD的長為.②求∠BDC的度數(shù);(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.20.(6分)如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F(xiàn)分別是BD,AD上的點,取EF中點G,連接DG并延長交AB于點M,延長EF交AC于點N。(1)求證:∠FAB和∠B互余;(2)若N為AC的中點,DE=2BE,MB=3,求AM的長.21.(6分)如圖,某城建部門計劃在新修的城市廣場的一塊長方形空地上修建一個面積為1200m2的停車場,將停車場四周余下的空地修建成同樣寬的通道,已知長方形空地的長為50m,寬為40m.(1)求通道的寬度;(2)某公司希望用80萬元的承包金額承攬修建廣場的工程,城建部門認(rèn)為金額太高需要降價,通過兩次協(xié)商,最終以51.2萬元達成一致,若兩次降價的百分率相同,求每次降價的百分率.22.(8分)某山區(qū)不僅有美麗風(fēng)光,也有許多令人喜愛的土特產(chǎn),為實現(xiàn)脫貧奔小康,某村組織村民加工包裝土特產(chǎn)銷售給游客,以增加村民收入.已知某種士特產(chǎn)每袋成本10元.試銷階段每袋的銷售價x(元)與該士特產(chǎn)的日銷售量y(袋)之間的關(guān)系如表:x(元)152030…y(袋)252010…若日銷售量y是銷售價x的一次函數(shù),試求:(1)日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式;(2)假設(shè)后續(xù)銷售情況與試銷階段效果相同,要使這種土特產(chǎn)每日銷售的利潤最大,每袋的銷售價應(yīng)定為多少元?每日銷售的最大利潤是多少元?23.(8分)分別用定長為a的線段圍成矩形和圓.(1)求圍成矩形的面積的最大值;(用含a的式子表示)(2)哪種圖形的面積更大?為什么?24.(8分)如圖,在中,是上的高,.(1)求證:;(2)若,求的長.25.(10分)如圖,在△ABC中,∠C=90°,以AC為直徑的⊙O交AB于點D,連接OD,點E在BC上,BE=DE.(1)求證:DE是⊙O的切線;(2)若BC=6,求線段DE的長;(3)若∠B=30°,AB=8,求陰影部分的面積(結(jié)果保留).26.(10分)如圖,在矩形ABCD中,AB=6,BC=4,動點Q在邊AB上,連接CQ,將△BQC沿CQ所在的直線對折得到△CQN,延長QN交直線CD于點M.(1)求證:MC=MQ(2)當(dāng)BQ=1時,求DM的長;(3)過點D作DE⊥CQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)實際意義以及函數(shù)的解析式,根據(jù)函數(shù)的類型,以及自變量的取值范圍即可進行判斷.【詳解】解:當(dāng)F一定時,P與S之間成反比例函數(shù),則函數(shù)圖象是雙曲線,同時自變量是正數(shù).故選:C.【點睛】此題主要考查了反比例函數(shù)的應(yīng)用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關(guān)鍵是確定兩個變量之間的函數(shù)關(guān)系,然后利用實際意義確定其所在的象限.2、A【解析】由題干可得y=2x,代入x+yy【詳解】∵xy∴y=2x,∴x+yy故選A.【點睛】本題考查了比例的基本性質(zhì):兩內(nèi)項之積等于兩外項之積.即若ab=cd,則3、A【分析】根據(jù)位似變換的性質(zhì)可知,△ODC∽△OBA,相似比是,根據(jù)已知數(shù)據(jù)可以求出點C的坐標(biāo).【詳解】由題意得,△ODC∽△OBA,相似比是,∴,又OB=6,AB=3,∴OD=2,CD=1,∴點C的坐標(biāo)為:(2,1),故選A.【點睛】本題考查的是位似變換,掌握位似變換與相似的關(guān)系是解題的關(guān)鍵,注意位似比與相似比的關(guān)系的應(yīng)用.4、B【分析】過O作BC的平行線交AC與G,由中位線的知識可得出,根據(jù)已知和平行線分線段成比例得出,再由同高不同底的三角形中底與三角形面積的關(guān)系可求出的比.【詳解】解:如圖,過O作,交AC于G,∵O是BD的中點,∴G是DC的中點.又,設(shè),又,,故選B.【點睛】考查平行線分線段成比例及三角形的中位線的知識,難度較大,注意熟練運用中位線定理和三角形面積公式.5、D【分析】利用位似的性質(zhì)得到AD:A′D′=OA:OA′=2:3,再利用相似多邊形的性質(zhì)得到得到四邊形A′B′C′D′的面積.【詳解】解:∵四邊形ABCD和四邊形A′B′C′D′是以點O為位似中心的位似圖形,∴AD:A′D′=OA:OA′=2:3,∴四邊形ABCD的面積:四邊形A′B′C′D′的面積=4:1,而四邊形ABCD的面積等于4,∴四邊形A′B′C′D′的面積為1.故選:D.【點睛】本題考查的是位似變換的性質(zhì),掌握位似圖形與相似圖形的關(guān)系、相似多邊形的性質(zhì)是解題的關(guān)鍵.6、A【解析】先算cos60°=,再計算即可.【詳解】∵∴故答案選A.【點睛】本題考查特殊角的三角函數(shù)值,能夠準(zhǔn)確記憶60°角的余弦值是解題的關(guān)鍵.7、A【解析】左視圖從左往右看,正方形的個數(shù)依次為:3,1.故選A.8、C【分析】由A、C關(guān)于BD對稱,推出PA=PC,推出PC+PE=PA+PE,推出當(dāng)A、P、E共線時,PE+PC的值最小,觀察圖象可知,當(dāng)點P與B重合時,PE+PC=6,推出BE=CE=2,AB=BC=4,分別求出PE+PC的最小值,PD的長即可解決問題.【詳解】解:∵在菱形ABCD中,∠A=120°,點E是BC邊的中點,∴易證AE⊥BC,∵A、C關(guān)于BD對稱,∴PA=PC,∴PC+PE=PA+PE,∴當(dāng)A、P、E共線時,PE+PC的值最小,即AE的長.觀察圖象可知,當(dāng)點P與B重合時,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值為,∴點H的縱坐標(biāo)a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴點H的橫坐標(biāo)b=,∴a+b=;故選C.【點睛】本題考查動點問題的函數(shù)圖象,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.9、D【解析】試題分析:大量反復(fù)試驗時,某事件發(fā)生的頻率會穩(wěn)定在某個常數(shù)的附近,這個常數(shù)就叫做事件概率的估計值.根據(jù)模擬實驗的定義可知,實驗相對科學(xué)的是次數(shù)最多的丁組.故答案選D.考點:事件概率的估計值.10、A【解析】結(jié)合二次函數(shù)解析式,根據(jù)函數(shù)的性質(zhì)對各小題分析判斷解答即可:①∵2>0,∴圖象的開口向上,故本說法錯誤;②圖象的對稱軸為直線x=3,故本說法錯誤;③其圖象頂點坐標(biāo)為(3,1),故本說法錯誤;④當(dāng)x<3時,y隨x的增大而減小,故本說法正確.綜上所述,說法正確的有④共1個.故選A.二、填空題(每小題3分,共24分)11、或【分析】求出直線l的解析式,證出△AOB∽△PCA,得出,設(shè)AC=m(m>0),則PC=2m,根據(jù)△PCA≌△PDA,得出,當(dāng)△PAD∽△PBA時,根據(jù),,得出m=2,從而求出P點的坐標(biāo)為(4,4)、(0,-4),若△PAD∽△BPA,得出,求出,從而得出,求出,即可得出P點的坐標(biāo)為.【詳解】∵點A(2,0),點B(0,1),∴直線AB的解析式為y=-x+1∵直線l過點A(4,0),且l⊥AB,∴直線l的解析式為;y=2x-4,∠BAO+∠PAC=90°,∵PC⊥x軸,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴,∴,設(shè)AC=m(m>0),則PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴,如圖1:當(dāng)△PAD∽△PBA時,則,則,∵AB=,∴AP=2,∴,∴m=±2,(負(fù)失去)∴m=2,當(dāng)m=2時,PC=4,OC=4,P點的坐標(biāo)為(4,4),如圖2,若△PAD∽△BPA,則,∴,則,∴m=±,(負(fù)舍去)∴m=,當(dāng)m=時,PC=1,OC=,∴P點的坐標(biāo)為(,1),故答案為:P(4,4),P(,1).【點睛】此題考查了一次函數(shù)的綜合,用到的知識點是相似三角形和全等三角形的判定與性質(zhì)、勾股定理、一次函數(shù)等,關(guān)鍵是根據(jù)題意畫出圖形,注意點P在第一象限有兩個點.12、點在圓外【分析】連接OC,作OF⊥AC于F,交弧于G,判斷OF與FG的數(shù)量關(guān)系即可判斷點和圓的位置關(guān)系.【詳解】解:如圖,連接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴點與弧所在圓的位置關(guān)系是點在圓外.故答案是:點在圓外.【點睛】本題考查了點和圓位置關(guān)系,利用垂徑定理進行有關(guān)線段的計算,通過構(gòu)造直角三角形是解題的關(guān)鍵.13、6【分析】圖中三角形有:△AEG,△ADC,△CFG,△CBA,因為,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中組合,據(jù)此可得出答案.【詳解】圖中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6個組合分別為:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案為6.【點睛】本題考查的是相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.14、(9,0)【詳解】根據(jù)位似圖形的定義,連接A′A,B′B并延長交于(9,0),所以位似中心的坐標(biāo)為(9,0).故答案為:(9,0).15、1.【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,再求出AH,MH,MB,CH,CO,然后證明△CON∽△CHM,再利用相似三角形的性質(zhì)可計算出ON的長.【詳解】解:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,MH⊥AC,MB⊥BC∴BM=MH=,∴AB=2+,∴AC=AB=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴=,即=,∴ON=1.故答案為:1.【點睛】本題主要考查正方形的性質(zhì)及相似三角形的判定及性質(zhì),掌握正方形的性質(zhì)及相似三角形的性質(zhì)是解題的關(guān)鍵.16、?【分析】采用列舉法求概率.【詳解】解:隨機抽取的所有可能情況為:甲乙;甲丙;甲?。灰冶?;乙?。槐×N情況,則符合條件的只有一種情況,則P(抽取的2名學(xué)生是甲和乙)=1÷6=.故答案為:【點睛】本題考查概率的計算,題目比較簡單.17、1【分析】根據(jù)題意,利用分類討論的方法、二次函數(shù)的性質(zhì)和一次函數(shù)的性質(zhì)可以求得各段對應(yīng)的最小值,從而可以解答本題.【詳解】∵(x2+2x+3)﹣(﹣2x+8)=x2+4x﹣5=(x+5)(x﹣1),∴當(dāng)x=﹣5或x=1時,(x2+2x+3)﹣(﹣2x+8)=0,∴當(dāng)x≥1時,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥1,當(dāng)x≤﹣5時,max{x2+2x+3,﹣2x+8}=x2+2x+3=(x+1)2+2≥18,當(dāng)﹣5<x<1時,max{x2+2x+3,﹣2x+8}=﹣2x+8>1,由上可得:max{x2+2x+3,﹣2x+8}的最小值是1.故答案為:1.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)的圖象,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和分類討論的方法解答.18、6.18<x<6.1【分析】根據(jù)表格中自變量、函數(shù)的值的變化情況,得出當(dāng)y=0時,相應(yīng)的自變量的取值范圍即可.【詳解】由表格數(shù)據(jù)可得,當(dāng)x=6.18時,y=﹣0.01,當(dāng)x=6.1時,y=0.02,∴當(dāng)y=0時,相應(yīng)的自變量x的取值范圍為6.18<x<6.1,故答案為:6.18<x<6.1.【點睛】本題考查了用圖象法求一元二次方程的近似根,解題的關(guān)鍵是找到y(tǒng)由正變?yōu)樨?fù)時,自變量的取值即可.三、解答題(共66分)19、(1)①,4;②;(2),證明見解析.【分析】(1)①根據(jù)等邊三角形的性質(zhì)得BA=BC,∠ABC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠OBD=∠ABC=60°,于是可確定旋轉(zhuǎn)角的度數(shù)為60°;由旋轉(zhuǎn)的性質(zhì)得BO=BD,加上∠OBD=60°,則可判斷△OBD為等邊三角形,所以O(shè)D=OB=4;②由△BOD為等邊三角形得到∠BDO=60°,再利用旋轉(zhuǎn)的性質(zhì)得CD=AO=3,然后根據(jù)勾股定理的逆定理可證明△OCD為直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得∠OBD=∠ABC=90°,BO=BD,CD=AO,則可判斷△OBD為等腰直角三角形,則OD=OB,然后根據(jù)勾股定理的逆定理,當(dāng)CD2+OD2=OC2時,△OCD為直角三角形,∠ODC=90°.【詳解】解:(1)①∵△ABC為等邊三角形,∴BA=BC,∠ABC=60°,∵△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,∴∠OBD=∠ABC=60°,∴旋轉(zhuǎn)角的度數(shù)為60°;∵旋轉(zhuǎn)至,∴,,,∴為等邊三角形∴,,故答案為:60°;4②在中,,,,∵∴∴為直角三角形,,∴(2)時,,理由如下:∵繞點順時針旋轉(zhuǎn)后得到,∴,,,∴為等腰直角三角形,∴∵當(dāng)時,為直角三角形,,∴,即∴當(dāng)滿足時,.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的判斷與性質(zhì)和勾股定理的逆定理.20、(1)見解析;(2)AM=7【解析】(1)根據(jù)等腰三角形三線合一可證得AD⊥BC,根據(jù)直角三角形兩銳角互余可證得結(jié)論;(2)根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DG=GE即可得∠GDE=∠GED,證明△DBM∽△ECN,根據(jù)相似三角形的性質(zhì)即可求得NC,繼而可求AM.【詳解】解:(1)∵AB=AC,AD為∠BAC的角平分線,∴AD⊥BC,∴∠FAB+∠B=90°.(2)∵AB=AC,AD是△ABC的角平分線,
∴BD=CD,
∵DE=2BE,
∴BD=CD=3BE,
∴CE=CD+DE=5BE,
∵∠EDF=90°,點G是EF的中點,
∴DG=GE,
∴∠GDE=∠GED,
∵AB=AC,
∴∠B=∠C,∴△DBM∽△ECN,∵MB=3,
∴NC=5,
∵N為AC的中點,
∴AC=2CN=10,
∴AB=AC=10,∴AM=AB-MB=7.【點睛】本題考查等腰三角形的性質(zhì),相似三角形的性質(zhì)和判定,直角三角形斜邊上的中線等于斜邊的一半.熟練掌握等腰三角形三線合一是解決(1)的關(guān)鍵;(2)問的關(guān)鍵是能證明△DBM∽△ECN.21、(1)5m,(2)20%【分析】(1)設(shè)通道的寬度為x米.由題意(50﹣2x)(40﹣2x)=1200,解方程即可;(2)可先列出第一次降價后承包金額的代數(shù)式,再根據(jù)第一次的承包金額列出第二次降價的承包金額的代數(shù)式,然后令它等于51.2即可列出方程.【詳解】(1)設(shè)通道寬度為xm,依題意得(50﹣2x)(40﹣2x)=1200,即x2﹣50x+225=0解得x1=5,x2=40(舍去)答:通道的寬度為5m.(2)設(shè)每次降價的百分率為x,依題意得80(1﹣x)2=51.2解得x1=0.2=20%,x2=1.8(舍去)答:每次降價的百分率為20%.【點睛】本題考查了一元二次方程的應(yīng)用,根據(jù)題意,正確列出關(guān)系式是解題的關(guān)鍵.22、(1)y=﹣x+40;(2)要使這種土特產(chǎn)每日銷售的利潤最大,每袋的銷售價應(yīng)定為25元,每日銷售的最大利潤是225元.【分析】(1)根據(jù)表格中的數(shù)據(jù),利用待定系數(shù)法,求出日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式即可(2)利用每件利潤×總銷量=總利潤,進而求出二次函數(shù)最值即可.【詳解】(1)依題意,根據(jù)表格的數(shù)據(jù),設(shè)日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式為y=kx+b得,解得,故日銷售量y(袋)與銷售價x(元)的函數(shù)關(guān)系式為:y=﹣x+40;(2)依題意,設(shè)利潤為w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴當(dāng)x=2時,w取得最大值,最大值為225,故要使這種土特產(chǎn)每日銷售的利潤最大,每袋的銷售價應(yīng)定為25元,每日銷售的最大利潤是225元.【點睛】本題考查了一次函數(shù)的應(yīng)用,二次函數(shù)的應(yīng)用,正確分析得出各量間的關(guān)系并熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.23、(1)矩形面積的最大值為;(2)圓的面積大.【分析】(1)設(shè)矩形的一邊長為b,則另外一邊長為b,由S矩形=b(b)=﹣(b)2可得答案;(2)設(shè)圓的半徑為r,則r,知S圓=πr2,比較大小即可得.【詳解】(1)設(shè)矩形的一邊長為b,則另外一邊長為b,S矩形=b(b)=﹣(b)2,∴矩形面積的最大值為;(2)設(shè)圓的半徑為r,則r,S圓=πr2.∵4π<16,∴,∴S圓>S矩,∴圓的面積大.【點睛】本題考查了列代數(shù)式與二次函數(shù)的最值,用到的知識點是圓的面積公式、矩形的面積公式、二次函數(shù)的最值,關(guān)鍵是根據(jù)題意列出代數(shù)式.24、(1)見解析;(2).【分析】(1)由于tanB=cos∠DAC,根據(jù)正切和余弦的概念可證明AC=BD;
(2)根據(jù),AD=24,可求出AC的長,再利用勾股定理可求出CD的長,再根據(jù)BC=CD+BD=CD+AC可得出結(jié)果.【詳解】(1)證明:是上的高,.在和中,,,又,,;(2)解:在中,,AD=24,則,.又,=AC+CD=26+10=1.【點睛】此題考查解直角三角形、直角三角形的性質(zhì)等知識,掌握基本概念和性質(zhì)是解題的關(guān)鍵.25、(1)詳見解析;(2)3;(3)【分析】(1)根據(jù)OA=OD,BE=DE,得∠A=∠1,∠B=∠2,根據(jù)∠ACB=90°,即可得∠1+∠2=90°,即可得OD⊥DE,從而可證明結(jié)論;(2)連接CD,根據(jù)現(xiàn)有條件推出CE是⊙O的切線,再結(jié)合DE是⊙O的切線,推出DE=CE又BE=DE,即可得出DE;(3)過O作OG⊥AD,垂足為G,根據(jù)已知條件推出AD,AG和OG的值,再根據(jù),即可得出答案.【詳解】解:(1)證明:∵OA=OD,BE=DE,∴∠A=∠1,∠B=∠2,∵△ABC中,∠ACB=90°,∴∠A+∠B=90°,∴∠1+∠2=90°,∴∠ODE=180°-(∠1+∠2)=90°,∴OD⊥DE,又OD為⊙O的半徑,∴DE是⊙O的切線;(2)連接CD,則∠ADC=90°,∵∠ACB=90°,∴AC⊥BC,又AC為⊙O的直徑,∴CE是⊙O的切線,又DE是⊙O的切線,∴DE=CE又BE=DE,∴DE=CE=BE=;(3)過O作OG⊥AD,垂足為G,則,∵Rt△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新媒體內(nèi)容版權(quán)授權(quán)與保護合作協(xié)議2篇
- 2024年標(biāo)準(zhǔn)土地共同開發(fā)合同版
- 2023-2024學(xué)年高中信息技術(shù)選擇性必修1(浙教版2019)數(shù)據(jù)與數(shù)據(jù)結(jié)構(gòu)-說課稿-5.4-數(shù)據(jù)查找
- 2024提高教育資源共享傳播能力采購合同3篇
- 2024數(shù)碼相機租賃與體育賽事轉(zhuǎn)播合同范本3篇
- 高血壓健康宣教
- 專業(yè)車輛租賃協(xié)議:2024經(jīng)典版式版
- 職業(yè)學(xué)院學(xué)生外出活動安全承諾書
- 2024志愿服務(wù)協(xié)議書
- 個人最高額抵押融資協(xié)議樣本(2024版)版B版
- 建筑工地節(jié)前停工安全檢查表
- 派克與永華互換表
- 宣傳廣告彩頁制作合同
- 小學(xué)高年級語文作文情景互動教學(xué)策略探究教研課題論文開題中期結(jié)題報告教學(xué)反思經(jīng)驗交流
- 【語法】小學(xué)英語語法大全
- 除濕機說明書
- 春節(jié)新年紅燈籠中國風(fēng)信紙
- 優(yōu)雅清新浪漫簡潔的PPT模板背景(免費)
- 現(xiàn)代電路技術(shù)——故障檢測D算法
- 鈑金與成型 其它典型成形
- 注塑件生產(chǎn)通用標(biāo)準(zhǔn)
評論
0/150
提交評論