![山東省青島西海岸新區(qū)第四中學2025屆九上數(shù)學期末復習檢測試題含解析_第1頁](http://file4.renrendoc.com/view12/M00/3A/34/wKhkGWaYfCuAbtHgAAIcraKUekY131.jpg)
![山東省青島西海岸新區(qū)第四中學2025屆九上數(shù)學期末復習檢測試題含解析_第2頁](http://file4.renrendoc.com/view12/M00/3A/34/wKhkGWaYfCuAbtHgAAIcraKUekY1312.jpg)
![山東省青島西海岸新區(qū)第四中學2025屆九上數(shù)學期末復習檢測試題含解析_第3頁](http://file4.renrendoc.com/view12/M00/3A/34/wKhkGWaYfCuAbtHgAAIcraKUekY1313.jpg)
![山東省青島西海岸新區(qū)第四中學2025屆九上數(shù)學期末復習檢測試題含解析_第4頁](http://file4.renrendoc.com/view12/M00/3A/34/wKhkGWaYfCuAbtHgAAIcraKUekY1314.jpg)
![山東省青島西海岸新區(qū)第四中學2025屆九上數(shù)學期末復習檢測試題含解析_第5頁](http://file4.renrendoc.com/view12/M00/3A/34/wKhkGWaYfCuAbtHgAAIcraKUekY1315.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省青島西海岸新區(qū)第四中學2025屆九上數(shù)學期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.用配方法解方程時,原方程可變形為()A. B. C. D.2.從一個不透明的口袋中摸出紅球的概率為,已知口袋中的紅球是3個,則袋中共有球的個數(shù)是()A.5 B.8 C.10 D.153.若,相似比為1:2,則與的面積的比為()A.1:2 B.2:1 C.1:4 D.4:14.某商場舉行投資促銷活動,對于“抽到一等獎的概率為”,下列說法正確的是()A.抽一次不可能抽到一等獎B.抽次也可能沒有抽到一等獎C.抽次獎必有一次抽到一等獎D.抽了次如果沒有抽到一等獎,那么再抽一次肯定抽到一等獎5.如圖,矩形中,,,點為矩形內一動點,且滿足,則線段的最小值為()A.5 B.1 C.2 D.36.如圖,PA、PB、分別切⊙O于A、B兩點,∠P=40°,則∠C的度數(shù)為()A.40° B.140° C.70° D.80°7.如圖,在正方形中,以為邊作等邊,延長分別交于點,連接與相交于點,給出下列結論:①;②;③;④;其中正確的是()A.①②③④ B.②③ C.①②④ D.①③④8.方程x(x﹣1)=0的解是().A.x=1 B.x=0 C.x1=1,x2=0 D.沒有實數(shù)根9.圖中所示的幾個圖形是國際通用的交通標志.其中不是軸對稱圖形的是()A. B. C. D.10.小麗參加學?!皯c元旦,迎新年演唱比賽,賽后小麗把七位評委所合的分數(shù)進行處理,得到平均數(shù)、中位數(shù),眾數(shù),方差,如果把這七個數(shù)據(jù)去掉一個最高分和一個最低分,則數(shù)據(jù)一定不發(fā)發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.方差 D.中位數(shù)二、填空題(每小題3分,共24分)11.如圖,現(xiàn)有測試距離為5m的一張視力表,表上一個E的高AB為2cm,要制作測試距離為3m的視力表,其對應位置的E的高CD為____cm.12.關于x的一元二次方程有一根為0,則m的值為______13.如圖,將邊長為4的正方形沿其對角線剪開,再把沿著方向平移,得到,當兩個三角形重疊部分的面積為3時,則的長為_________.14.如圖,半圓O的直徑AB=18,C為半圓O上一動點,∠CAB=а,點G為△ABC的重心.則GO的長為__________.15.如圖,已知的半徑為2,內接于,,則__________.16.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.17.某游樂場新推出一個“極速飛車”的項目.項目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項目難度,其中斜坡軌道BC的坡度為,BC=米,CD=8米,∠D=36°,(其中A,B,C,D均在同一平面內)則垂直升降電梯AB的高度約為__________米.(精確到0.1米,參考數(shù)據(jù):)18.如圖,點P是反比例函數(shù)y=(k≠0)的圖象上任意一點,過點P作PM⊥x軸,垂足為M.若△POM的面積等于2,則k的值等于_三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,且與反比例函數(shù)在第一象限的圖象交于點,軸于點,.(1)求點的坐標;(2)動點在軸上,軸交反比例函數(shù)的圖象于點.若,求點的坐標.20.(6分)如圖,在△ABC中,∠C=60°,AB=4.以AB為直徑畫⊙O,交邊AC于點D.AD的長為,求證:BC是⊙O的切線.21.(6分)如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點.(1)求A、B兩點的坐標;(2)求△AOB的面積.22.(8分)某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:(1)請將以上兩幅統(tǒng)計圖補充完整;(2)若“一般”和“優(yōu)秀”均被視為達標成績,則該校被抽取的學生中有人達標;(3)若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?23.(8分)如圖,在△ABC中,D是BC邊上的中點,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.(1)求證:△ABC∽△FCD;(2)若S△ABC=20,BC=10,求DE的長.24.(8分)如圖,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分線交AC于點D,在AB上取點O,以點O為圓心經(jīng)過B、D兩點畫圓分別與AB、BC相交于點E、F(異于點B).(1)求證:AC是⊙O的切線;(2)若點E恰好是AO的中點,求的長;(3)若CF的長為,①求⊙O的半徑長;②點F關于BD軸對稱后得到點F′,求△BFF′與△DEF′的面積之比.25.(10分)如圖①,在平行四邊形ABCD中,對角線AC、BD交于點O,AB=AC,AB⊥AC,過點A作AE⊥BD于點E.(1)若BC=6,求AE的長度;(2)如圖②,點F是BD上一點,連接AF,過點A作AG⊥AF,且AG=AF,連接GC交AE于點H,證明:GH=CH.26.(10分)如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=1.(1)求BE的長.(2)若BC=15,求的長.
參考答案一、選擇題(每小題3分,共30分)1、B【分析】先將二次項系數(shù)化為1,將常數(shù)項移動到方程的右邊,方程兩邊同時加上一次項系數(shù)的一半的平方,結合完全平方公式進行化簡即可解題.【詳解】故選:B.【點睛】本題考查配方法解一元二次方程,其中涉及完全平方公式,是重要考點,難度較易,掌握相關知識是解題關鍵.2、D【分析】根據(jù)概率公式,即可求解.【詳解】3÷=15(個),答:袋中共有球的個數(shù)是15個.故選D.【點睛】本題主要考查概率公式,掌握概率公式,是解題的關鍵.3、C【解析】試題分析:直接根據(jù)相似三角形面積比等于相似比平方的性質.得出結論:∵,相似比為1:2,∴與的面積的比為1:4.故選C.考點:相似三角形的性質.4、B【解析】根據(jù)大量反復試驗時,某事件發(fā)生的頻率會穩(wěn)定在某個常數(shù)的附近,這個常數(shù)就叫做事件概率的估計值,而不是一種必然的結果,可得答案.【詳解】A.“抽到一等獎的概率為”,抽一次也可能抽到一等獎,故錯誤;B.“抽到一等獎的概率為”,抽10次也可能抽不到一等獎,故正確;C.“抽到一等獎的概率為”,抽10次也可能抽不到一等獎,故錯誤;D.“抽到一等獎的概率為”,抽第10次的結果跟前面的結果沒有關系,再抽一次也不一定抽到一等獎,故錯誤;故選B.【點睛】關鍵是理解概率是反映事件的可能性大小的量.概率小的有可能發(fā)生,概率大的有可能不發(fā)生.概率等于所求情況數(shù)與總情況數(shù)之比.5、B【分析】通過矩形的性質和等角的條件可得∠BPC=90°,所以P點應該在以BC為直徑的圓上,即OP=4,根據(jù)兩邊之差小于第三邊及三點共線問題解決.【詳解】如圖,∵四邊形ABCD為矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴點P在以BC為直徑的圓⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴當P,D,O三點共線時,PD最小,∴PD的最小值為OD-OP=5-4=1.故選:B.【點睛】本題考查矩形的性質,勾股定理,線段最小值問題及圓的性質,分析出P點的運動軌跡是解答此題的關鍵.6、C【分析】連接OA,OB根據(jù)切線的性質定理,切線垂直于過切點的半徑,即可求得∠OAP,∠OBP的度數(shù),根據(jù)四邊形的內角和定理即可求的∠AOB的度數(shù),然后根據(jù)圓周角定理即可求解.【詳解】∵PA是圓的切線,∴同理根據(jù)四邊形內角和定理可得:∴故選:C.【點睛】考查切線的性質以及圓周角定理,連接圓心與切點是解題的關鍵.7、A【分析】根據(jù)等邊三角形、正方形的性質求得∠ABE=30°,利用直角三角形中30°角的性質即可判斷①;證得PC=CD,利用三角形內角和定理即可求得∠PDC,可求得∠BPD,即可判斷②;求得∠FDP=15°,∠PBD=15°,即可證明△PDE∽△DBE,判斷③正確;利用相似三角形對應邊成比例可判斷④.【詳解】∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,∴,
∴;故①正確;
∵PC=CD,∠PCD=30°,
∴∠PDC=∠CPD===75°,∴∠BPD=∠BPC+∠CPD=60°+75°=135°,故②正確;
∵∠PDC=75°,∴∠FDP=∠ADC-∠PDC=90°-75°=15°,
∵∠DBA=45°,
∴∠PBD=∠DBA-∠ABE=45°-30°=15°,
∴∠EDP=∠EBD,
∵∠DEP=∠DEP,
∴△PDE∽△DBE,故③正確;
∵△PDE∽△DBE,∴,即,故④正確;綜上:①②③④都是正確的.
故選:A.【點睛】本題考查的正方形的性質,等邊三角形的性質以及相似三角形的判定和性質,解答此題的關鍵是熟練掌握性質和定理.8、C【解析】根據(jù)因式分解法解方程得到x=0或x﹣1=0,解兩個一元一次方程即可.【詳解】解:x(x﹣1)=0x=0或x﹣1=0∴x1=1,x2=0,故選C.【點睛】本題考查因式分解法解一元二次方程,熟練掌握一元二次方程的解法是關鍵.9、C【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形.【詳解】A、B、D都是軸對稱圖形,而C不是軸對稱圖形.
故選C.【點睛】本題主要考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、D【分析】根據(jù)中位數(shù)的定義即位于中間位置或中間兩數(shù)的平均數(shù)可以得到去掉一個最高分和一個最低分不影響中位數(shù)進行分析即可.【詳解】解:去掉一個最高分和一個最低分對中位數(shù)沒有影響,故選:D.【點睛】本題考查統(tǒng)計量的選擇,解題的關鍵是了解中位數(shù)的定義,難度較?。?、填空題(每小題3分,共24分)11、1.1【分析】證明△OCD∽△OAB,然后利用相似比計算出CD即可.【詳解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即對應位置的E的高CD為1.1cm.故答案為1.1.【點睛】本題考查了相似三角形的應用:常常構造“A”型或“X”型相似圖,利用三角形相似的性質求相應線段的長.12、m=-1【解析】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,然后根據(jù)一元二次方程的定義確定m的值.【詳解】把x=0代入方程(m-1)x2+x+m2-9=0得m2-9=0,解得m1=1,m2=-1,
而m-1≠0,
所以m的值為-1.
故答案是:-1.【點睛】考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.也考查了一元二次方程的定義.13、1或1【分析】設AC、交于點E,DC、交于點F,且設,則,,列出方程即可解決問題.【詳解】設AC、交于點E,DC、交于點F,且設,則,,重疊部分的面積為,由,解得或1.即或1.故答案是1或1.【點睛】本題考查了平移的性質、菱形的判定和正方形的性質綜合,準確分析題意是解題的關鍵.14、3【分析】根據(jù)三角形重心的概念直接求解即可.【詳解】如圖,連接OC,∵AB為直徑,∴∠ACB=90,∵點O是直徑AB的中點,重心G在半徑OC,∴.故答案為:3.【點睛】本題考查了三角形重心的概念及性質、直徑所對圓周角為直角、斜邊上的中線等于斜邊的一半,熟記并靈活運用三角形重心的性質是解題的關鍵.15、【解析】分析:根據(jù)圓內接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點睛:本題考查三角形的外接圓和外心,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.16、.【詳解】試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關鍵,難度不大.17、11.2【分析】延長AB和DC相交于點E,根據(jù)勾股定理,可得CE,BE的長,根據(jù)正切函數(shù),可得AE的長,再根據(jù)線段的和差,可得答案.【詳解】解:如圖,延長AB和DC相交于點E,
由斜坡軌道BC的坡度為i=1:1,得
BE:CE=1:1.
設BE=x米,CE=1x米,
在Rt△BCE中,由勾股定理,得
BE1+CE1=BC1,
即x1+(1x)1=(11)1,
解得x=11,
即BE=11米,CE=12米,
∴DE=DC+CE=8+12=31(米),
由tan36°≈0.73,得tanD=≈0.73,
∴AE≈0.73×31=13.36(米).
∴AB=AE-BE=13.36-11=11.36≈11.2(米).
故答案為:11.2.【點睛】本題考查了解直角三角形的應用,作出輔助線構造直角三角形,利用勾股定理得出CE,BE的長度是解題關鍵.18、-2【分析】利用反比例函數(shù)k的幾何意義得到|k|=1,然后根據(jù)反比例函數(shù)所在的象限確定k的值.【詳解】∵△POM的面積等于1,∴|k|=1.∵反比例函數(shù)圖象過第二象限,∴k<0,∴k=﹣2.故答案為:﹣2.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.也考查了反比例函數(shù)的性質.三、解答題(共66分)19、(1);(2)或【分析】(1)根據(jù)反比例函數(shù)表達式求出點C坐標,再利用“待定系數(shù)法”求出一次函數(shù)表達式,從而求出坐標;(2)根據(jù)“P在軸上,軸交反比例函數(shù)的圖象于點”及k的幾何意義可求出△POQ的面積,從而求得△PAC的面積,利用面積求出點P坐標即可.【詳解】解:(1)∵軸于點,,∴點C的橫坐標為2,把代入反比例函數(shù),得,∴,設直線的解析式為,把,代入,得,解得,∴直線的解析式為,令,解得,∴;(2)∵軸,點在反比例函數(shù)的圖象上,∴,∵,∴,∴,∴,由(1)知,∴或.【點睛】本題考查一次函數(shù)與反比例函數(shù)的綜合應用,要熟練掌握“待定系數(shù)法”求表達式及反比例函數(shù)中k的幾何意義,在利用面積求坐標時要注意多種情況.20、證明見解析.【分析】連接OD,根據(jù)弧長公式求出AOD的度數(shù),再證明AB⊥BC即可;【詳解】證明:如圖,連接,是直徑且
,
.
設,的長為,
解得.
即
在☉O中,..
,,即又為直徑,是☉O的切線.【點睛】本題考查切線的判定,圓周角定理以及等腰三角形的性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.21、(1)A的坐標是(3,1),B的坐標是(﹣1,﹣3);(2)1【分析】(1)求出兩函數(shù)解析式組成的方程組的解即可;(2)先求出函數(shù)y=x﹣2與y軸的交點的坐標,再根據(jù)三角形的面積公式求出面積即可.【詳解】解:(1)解方程組,解得:,,即A的坐標是(3,1),B的坐標是(﹣1,﹣3);(2)設函數(shù)y=x﹣2與y軸的交點是C,當x=0時,y=﹣2,即OC=2,∵A的坐標是(3,1),B的坐標是(﹣1,﹣3),∴△AOB的面積S=S△AOC+S△BOC==1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,解方程組等知識點,能求出A、B、C的坐標是解此題的關鍵.22、(1)詳見解析;(2)1;(3)10【分析】(1)成績一般的學生占的百分比=1﹣成績優(yōu)秀的百分比﹣成績不合格的百分比,測試的學生總數(shù)=不合格的人數(shù)÷不合格人數(shù)的百分比,繼而求出成績優(yōu)秀的人數(shù),然后補全圖形即可.(2)將成績一般和優(yōu)秀的人數(shù)相加即可;(3)該校學生文明禮儀知識測試中成績達標的人數(shù)=1200×成績達標的學生所占的百分比.【詳解】(1)成績一般的學生占的百分比=1﹣20%﹣50%=30%,測試的學生總數(shù)=24÷20%=120人,成績優(yōu)秀的人數(shù)=120×50%=60人,所補充圖形如下所示:(2)該校被抽取的學生中達標的人數(shù)=36+60=1.(3)1200×(50%+30%)=10(人).答:估計全校達標的學生有10人.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.23、(1)見解析;(2)【分析】(1)根據(jù)題目條件證明和,利用兩組對應角相等的三角形相似,證明;(2)過點A作于點M,先通過的面積求出AM的長,根據(jù)得到,再算出DE的長.【詳解】解:(1)∵,∴,∵D是BC邊上的中點且∴,∴,∴;(2)如圖,過點A作于點M,∵,∴,解得,∵,,∴,∵,∴,∵,,∴,∴,∴.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是熟練掌握相似三角形的性質和判定定理.24、(1)見解析;(2);(3)①r1=1,;②△BFF'與△DEF'的面積比為或【分析】(1)連結,證明,得出,則結論得證;(2)求出,,連結,則,由弧長公式可得出答案;(3)①如圖3,過作于,則,四邊形是矩形,設圓的半徑為,則.,證明,由比例線段可得出的方程,解方程即可得出答案;②證明,當或時,根據(jù)相似三角形的性質可得出答案.【詳解】解:(1)連結DO,∵BD平分∠ABC,∴∠CBD=∠ABD,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO∥BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切線;(2)∵E是AO中點,∴AE=EO=DO=BO=,∴sin∠A=,∴∠A=30°,∠B=60°,連結FO,則∠BOF=60°,∴=.(3)①如圖3,連結OD,過O作OM⊥BC于M,則BM=FM,四邊形CDOM是矩形設圓的半徑為r,則OA=5﹣r.BM=FM=r﹣,∵DO∥BC,∴∠AOD=∠OBM,而∠ADO=90°=∠OMB,∴△ADO∽△OMB,∴,即,解之得r1=1,.②∵在(1)中∠CBD=∠ABD,∴DE=DF,∵BE是⊙O的直徑,∴∠BDE=90°,而F、F'關于BD軸對稱,∴BD⊥FF',BF=BF',∴DE∥FF',∴∠DEF'=∠BF'F,∴△DEF'∽∠BFF',當r=1時,AO=4,DO=1,BO=1,由①知,,,,,,,與的面積之比,同理可得,當時.時,與的面積比.與的面積比為或.【點睛】本題是圓的綜合題,考查了直角三角形30度角的性質,切線的判定和性質,等腰三角形的判定,圓周角定理,勾股定理,軸對稱的性質,相似三角形的判定和性質等知識,正確作出輔助線,熟練運用圓的相關性質定理是解題的關鍵.25、(1)AE=;(2)證明見解析.【分析】(1)根據(jù)題意可得:AB=AC=6,可得AO=3,根據(jù)勾股定理可求BO的值,根據(jù)S△AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國空心陽光板行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國龍蝦片數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國飼用沸石粉數(shù)據(jù)監(jiān)測研究報告
- 2025年座鉆項目可行性研究報告
- 2025至2030年中國掌上型多通道汽車發(fā)動機示波儀數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國工作臺面數(shù)據(jù)監(jiān)測研究報告
- 2025年中國耐火澆筑料市場調查研究報告
- 2025-2030年堅果創(chuàng)意料理企業(yè)制定與實施新質生產(chǎn)力戰(zhàn)略研究報告
- 2025-2030年在線醫(yī)療法規(guī)與政策咨詢服務行業(yè)跨境出海戰(zhàn)略研究報告
- 2025-2030年新能源汽車充電調度行業(yè)跨境出海戰(zhàn)略研究報告
- 2024版2024年《咚咚鏘》中班音樂教案
- DB61∕T 1854-2024 生態(tài)保護紅線評估調整技術規(guī)范
- GA 2139-2024警用防暴臂盾
- DL∕T 5810-2020 電化學儲能電站接入電網(wǎng)設計規(guī)范
- 北京三甲中醫(yī)疼痛科合作方案
- QCT957-2023洗掃車技術規(guī)范
- 新外研版高中英語選擇性必修1單詞正序英漢互譯默寫本
- 自愿斷絕父子關系協(xié)議書電子版
- 2023年4月自考00504藝術概論試題及答案含解析
- 美麗的大自然(教案)2023-2024學年美術一年級下冊
- 成都特色民俗課件
評論
0/150
提交評論