北京市西城區(qū)名校2025屆九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第1頁
北京市西城區(qū)名校2025屆九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第2頁
北京市西城區(qū)名校2025屆九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第3頁
北京市西城區(qū)名校2025屆九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第4頁
北京市西城區(qū)名校2025屆九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市西城區(qū)名校2025屆九年級數(shù)學(xué)第一學(xué)期期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,則∠BOF為()A.35° B.30° C.25° D.20°2.如圖,在△ABC中,D,E分別是AB,BC邊上的點,且DE∥AC,若,,則△ACD的面積為()A.64 B.72 C.80 D.963.如圖,AB是半圓O的直徑,AC為弦,OD⊥AC于D,過點O作OE∥AC交半圓O于點E,過點E作EF⊥AB于F.若AC=2,則OF的長為()A. B. C.1 D.24.一人乘雪橇沿坡比1:的斜坡筆直滑下,滑下的距離s(m)與時間t(s)之間的關(guān)系為s=8t+2t2,若滑到坡底的時間為4s,則此人下降的高度為()A.16m B.32m C.32m D.64m5.若函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<26.如圖,正方形的邊長是4,是的中點,連接、相交于點,則的長是()A. B. C. D.57.如圖,在中,分別為邊上的中點,則與的面積之比是()A. B. C. D.8.某超市一月份的營業(yè)額為200萬元,已知第一季度的總營業(yè)額共1000萬元,如果平均每月增長率為x,則由題意列方程應(yīng)為()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10009.函數(shù)y=與y=kx2﹣k(k≠0)在同一直角坐標系中的圖象可能是()A. B.C. D.10.能判斷一個平行四邊形是矩形的條件是()A.兩條對角線互相平分 B.一組鄰邊相等C.兩條對角線互相垂直 D.兩條對角線相等二、填空題(每小題3分,共24分)11.計算的結(jié)果是_____________.12.廊橋是我國古老的文化遺產(chǎn)如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F(xiàn)處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是______米精確到1米13.若是方程的一個根,則的值是________.14.已知在正方形ABCD中,點E、F分別為邊BC與CD上的點,且∠EAF=45°,AE與AF分別交對角線BD于點M、N,則下列結(jié)論正確的是_____.①∠BAE+∠DAF=45°;②∠AEB=∠AEF=∠ANM;③BM+DN=MN;④BE+DF=EF15.如圖,拋物線與軸的負半軸交于點,與軸交于點,連接,點分別是直線與拋物線上的點,若點圍成的四邊形是平行四邊形,則點的坐標為__________.16.若一組數(shù)據(jù)1,2,x,4的平均數(shù)是2,則這組數(shù)據(jù)的方差為_____.17.小明和小亮在玩“石頭、剪子、布”的游戲,兩人一起做同樣手勢的概率是_____________.18.若二次函數(shù)的圖象開口向下,則_____0(填“=”或“>”或“<”).三、解答題(共66分)19.(10分)如圖,點A是我市某小學(xué),在位于學(xué)校南偏西15°方向距離120米的C點處有一消防車.某一時刻消防車突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災(zāi),消防隊必須立即沿路線CF趕往救火.已知消防車的警報聲傳播半徑為110米,問消防車的警報聲對學(xué)校是否會造成影響?若會造成影響,已知消防車行駛的速度為每小時60千米,則對學(xué)校的影響時間為幾秒?(≈3.6,結(jié)果精確到1秒)20.(6分)解方程:(1);(2).21.(6分)如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=1.(1)求拋物線的解析式.(2)若點D(2,2)是拋物線上一點,那么在拋物線的對稱軸上,是否存在一點P,使得△BDP的周長最小,若存在,請求出點P的坐標,若不存在,請說明理由.注:二次函數(shù)(≠0)的對稱軸是直線=.22.(8分)如圖,的直徑,點為上一點,連接、.(1)作的角平分線,交于點;(2)在(1)的條件下,連接.求的長.23.(8分)如圖,是中邊上的中點,交于點,是中邊上的中點,且與交于點.(1)求的值.(2)若,求的長.(用含的代數(shù)式表示)24.(8分)如圖,點D,E分別是不等邊△ABC(即AB,BC,AC互不相等)的邊AB,AC的中點.點O是△ABC所在平面上的動點,連接OB,OC,點G,F(xiàn)分別是OB,OC的中點,順次連接點D,G,F(xiàn),E.(1)如圖,當(dāng)點O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)25.(10分)“道路千萬條,安全第一條”,《中華人民共和國道路交通管理條例》規(guī)定:“小汽車在城市街道上的行駛速度不得超過”,一輛小汽車在一條城市街道上由西向東行駛,在據(jù)路邊處有“車速檢測儀”,測得該車從北偏西的點行駛到北偏西的點,所用時間為.(1)試求該車從點到點的平均速度(結(jié)果保留根號);(2)試說明該車是否超速.26.(10分)如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC、BC于點D、E,過點B作直線BF,交AC的延長線于點F.(1)求證:BE=CE;(2)若AB=6,求弧DE的長;(3)當(dāng)∠F的度數(shù)是多少時,BF與⊙O相切,證明你的結(jié)論.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】試題分析:CD∥AB,∠D=50°則∠BOD=50°.則∠DOA=180°-50°=130°.則OE平分∠AOD,∠EOD=65°.∵OF⊥OE,所以∠BOF=90°-65°=25°.選C.考點:平行線性質(zhì)點評:本題難度較低,主要考查學(xué)生對平行線性質(zhì)及角平分線性質(zhì)的掌握.2、C【分析】根據(jù)題意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根據(jù)相似三角形面積的比等于相似比的平方求出△ABC的面積,然后求出△ACD的面積.【詳解】∵S△BDE=4,S△CDE=16,

∴S△BDE:S△CDE=1:4,

∵△BDE和△CDE的點D到BC的距離相等,∴,∴,∵DE∥AC,

∴△DBE∽△ABC,

∴S△DBE:S△ABC=1:25,∴S△ABC=100

∴S△ACD=S△ABC-S△BDE-S△CDE=100-4-16=1.

故選C.【點睛】考查了相似三角形的判定與性質(zhì),等高的三角形的面積的比等于底邊的比,熟記相似三角形面積的比等于相似比的平方,用△BDE的面積表示出△ABC的面積是解題的關(guān)鍵.3、C【詳解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故選C.【點睛】本題考查1.全等三角形的判定與性質(zhì);2.垂徑定理,掌握相關(guān)性質(zhì)定理正確推理論證是解題關(guān)鍵.4、B【分析】根據(jù)時間,算出斜坡的長度,再根據(jù)坡比和三角函數(shù)的關(guān)系,算出人的下降高度即可.【詳解】設(shè)斜坡的坡角為α,當(dāng)t=4時,s=8×4+2×42=64,∵斜坡的坡比1:,∴tanα=,∴α=30°,∴此人下降的高度=×64=32,故選:B.【點睛】本題考查坡比和三角函數(shù)中正切的關(guān)系,屬基礎(chǔ)題.5、B【分析】根據(jù)反比例函數(shù)的性質(zhì),可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.6、C【分析】先根據(jù)勾股定理解得BD的長,再由正方形性質(zhì)得AD∥BC,所以△AOD∽△EOB,最后根據(jù)相似三角形性質(zhì)即可解答,【詳解】解:∵四邊形ABCD是正方形,邊長是4,∴BD=,,∵是的中點,AD∥BC,所以BC=AD=2BE,∴△AOD∽△EOB,∴,∴OD=BD=×4=.故選:C.【點睛】本題考查正方形性質(zhì)、相似三角形的判定和性質(zhì),解題關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì).7、A【分析】根據(jù)相似三角形的性質(zhì)即可求出答案.【詳解】由題意可知:是的中位線,,,,故選:A.【點睛】本題考查相似三角形,解題的關(guān)鍵是熟練運用相似三角形的性質(zhì)與判定,本題屬于基礎(chǔ)題型.8、D【分析】根據(jù)增長率問題公式即可解決此題,二月為200(1+x),三月為200(1+x)2,三個月相加即得第一季度的營業(yè)額.【詳解】解:∵一月份的營業(yè)額為200萬元,平均每月增長率為x,∴二月份的營業(yè)額為200×(1+x),∴三月份的營業(yè)額為200×(1+x)×(1+x)=200×(1+x)2,∴可列方程為200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故選D.【點睛】此題考察增長率問題類一元二次方程的應(yīng)用,注意:第一季度指一、二、三月的總和.9、D【分析】根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論,然后再對照選項即可.【詳解】解:分兩種情況討論:①當(dāng)k<0時,反比例函數(shù)y=在二、四象限,而二次函數(shù)y=kx2﹣k開口向下,故A、B、C、D都不符合題意;②當(dāng)k>0時,反比例函數(shù)y=在一、三象限,而二次函數(shù)y=kx2﹣k開口向上,與y軸交點在原點下方,故選項D正確;故選:D.【點睛】本題主要考查反比例函數(shù)與二次函數(shù)的圖象,掌握k對反比例函數(shù)與二次函數(shù)的圖象的影響是解題的關(guān)鍵.10、D【分析】根據(jù)矩形的判定進行分析即可;【詳解】選項A中,兩條對角線互相平分是平行四邊形,故選項A錯誤;選項B中,一組鄰邊相等的平行四邊形是菱形,故選項B錯誤;選項C中,兩條對角線互相垂直的平行四邊形是菱形,故選項C錯誤;選項D中,兩條對角線相等的平行四邊形是矩形,故選項D正確;故選D.【點睛】本題主要考查了矩形的判定,掌握矩形的判定是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、1【分析】先分母有理化,然后把二次根式化為最簡二次根式后合并即可.【詳解】解:原式=2-2=1.故答案為1.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.12、【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有,即,,.所以兩盞警示燈之間的水平距離為:13、1【分析】將代入方程,得到,進而得到,,然后代入求值即可.【詳解】解:由題意,將代入方程∴,,∴故答案為:1【點睛】本題考查一元二次方程的解,及分式的化簡,掌握方程的解的概念和平方差公式是本題的解題關(guān)鍵.14、①②④【分析】由∠EAF=45°,可得∠BAE+∠DAF=45°,故①正確;如圖,把△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH,根據(jù)三角形的外角的性質(zhì)得到∠ANM=∠AEB,于是得到∠AEB=∠AEF=∠ANM;故②正確;由旋轉(zhuǎn)的性質(zhì)得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據(jù)全等三角形的性質(zhì)得到EH=EF,∴∠AEB=∠AEF,求得BE+BH=BE+DF=EF,故④正確;BM、DN、MN存在BM2+DN2=MN2的關(guān)系,故③錯誤.【詳解】解:∵∠EAF=45°,∴∠BAE+∠DAF=45°,故①正確;如圖,把△ADF繞點A順時針旋轉(zhuǎn)90°得到△ABH,

由旋轉(zhuǎn)的性質(zhì)得,BH=DF,AH=AF,∠BAH=∠DAF,

∵∠EAF=45°,

∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,

∴∠EAH=∠EAF=45°,

在△AEF和△AEH中,,∴△AEF≌△AEH(SAS),

∴EH=EF,

∴∠AEB=∠AEF,

∴BE+BH=BE+DF=EF,故④正確;∵∠ANM=∠ADB+∠DAN=45°+∠DAN,

∠AEB=90°-∠BAE=90°-(∠HAE-∠BAH)=90°-(45°-∠BAH)=45°+∠BAH,

∴∠ANM=∠AEB,

∴∠AEB=∠AEF=∠ANM;故②正確;BM、DN、MN滿足等式BM2+DN2=MN2,而非BM+DN=MN,故③錯誤.故答案為①②④.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),勾股定理,熟記各性質(zhì)并利用旋轉(zhuǎn)變換作輔助線構(gòu)造成全等三角形是解題的關(guān)鍵.15、或或【分析】根據(jù)二次函數(shù)與x軸的負半軸交于點,與軸交于點.直接令x=0和y=0求出A,B的坐標.再根據(jù)平行四邊形的性質(zhì)分情況求出點E的坐標.【詳解】由拋物線的表達式求得點的坐標分別為.由題意知當(dāng)為平行四邊形的邊時,,且,∴線段可由線段平移得到.∵點在直線上,①當(dāng)點的對應(yīng)點為時,如圖,需先將向左平移1個單位長度,此時點的對應(yīng)點的橫坐標為,將代入,得,∴.②當(dāng)點A的對應(yīng)點為時,同理,先將向右平移2個單位長度,可得點的對應(yīng)點的橫坐標為2,將代入得,∴當(dāng)為平行四邊形的對角線時,可知的中點坐標為,∵在直線上,∴根據(jù)對稱性可知的橫坐標為,將代入得,∴.綜上所述,點的坐標為或或.【點睛】本題是二次函數(shù)的綜合題,主要考查了特殊點的坐標的確定,平行四邊形的性質(zhì),解本題的關(guān)鍵是分情況解決問題的思想.16、【分析】先由數(shù)據(jù)的平均數(shù)公式求得x,再根據(jù)方差的公式計算即可.【詳解】∵數(shù)據(jù)1,2,x,4的平均數(shù)是2,∴,解得:,∴方差.故答案為:.【點睛】本題考查了平均數(shù)與方差的定義,平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù);方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).17、【分析】畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出兩人隨機同時出手一次,做同樣手勢的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:

共有9種等可能的結(jié)果數(shù),其中兩人隨機同時出手一次,做同樣手勢的結(jié)果數(shù)為3,

故兩人一起做同樣手勢的概率是的概率為.故答案為:.【點睛】本題涉及列表法和樹狀圖法以及相關(guān)概率知識,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、<【解析】由二次函數(shù)圖象的開口向下,可得.【詳解】解:∵二次函數(shù)的圖象開口向下,∴.故答案是:<.【點睛】考查了二次函數(shù)圖象與系數(shù)的關(guān)系.二次項系數(shù)決定拋物線的開口方向和大?。?dāng)時,拋物線向上開口;當(dāng)時,拋物線向下開口;還可以決定開口大小,越大開口就越?。⒔獯痤}(共66分)19、4秒【分析】作AB⊥CF于B,根據(jù)方向角、勾股定理求出AB的長,根據(jù)題意比較得到消防車的警報聲對聽力測試是否會造成影響;求出造成影響的距離,根據(jù)速度計算即可.【詳解】解:作AB⊥CF于B,由題意得:∠ACB=60°,AC=120米,則∠CAB=30°∴米,∴米,∵<110,∴消防車的警報聲對學(xué)校會造成影響,造成影響的路程為米,∵秒,∴對學(xué)校的影響時間為4秒.【點睛】本題考查的是解直角三角形的應(yīng)用-方向角問題,正確標注方向角、熟記銳角三角函數(shù)的概念是解題的關(guān)鍵.20、(1);(2)【分析】(1)化為一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【詳解】(1)原方程可化為,得(2),所以.【點睛】本題考查的是一元二次方程的解法,能根據(jù)方程的特點靈活的選擇解方程的方法是關(guān)鍵.21、(2)(2)P(,)【詳解】解:(2)∵OA=2,OC=2,∴A(-2,0),C(0,2).將C(0,2)代入得c=2.將A(-2,0)代入得,,解得b=,∴拋物線的解析式為;(2)如圖:連接AD,與對稱軸相交于P,由于點A和點B關(guān)于對稱軸對稱,則BP+DP=AP+DP,當(dāng)A、P、D共線時BP+DP=AP+DP最?。O(shè)直線AD的解析式為y=kx+b,將A(-2,0),D(2,2)分別代入解析式得,,解得,,∴直線AD解析式為y=x+2.∵二次函數(shù)的對稱軸為,∴當(dāng)x=時,y=×+2=.∴P(,).22、(1)見解析;(2)【分析】(1)以點為圓心,任意長為半徑(不大于AC為佳)畫弧于AC和BC交于兩點,然后以這兩個交點為圓心,大于這兩點之間距離的一半為半徑畫兩段弧交于一點,過點C和該交點的線就是的角平分線;(2)連接,先根據(jù)角平分線的定義得出,再根據(jù)圓周角定理得出,最后再利用勾股定理求解即可.【詳解】解:(1)如圖,為所求的角平分線;(2)連接,的直徑,,.平分,..在中,.【點睛】本題主要考察基本作圖、角平分線定義、圓周角定理、勾股定理,準確作出輔助線是關(guān)鍵.23、(1);(2)【分析】(1)通過證明,再根據(jù)相似三角形對應(yīng)邊成比例即可求出;(2)設(shè)AB=m,由是中邊上的中點,可得,進而得出,根據(jù)題意,進而得出【詳解】解:(1)∵為的中點,,∴為的中點,,∴,∴,∴,∴,∴.(2)∵,∴.∵,∴.∵,∴.【點睛】本題考查了相似三角形的判定及性質(zhì)和三角形的中位線定理,熟練掌握相關(guān)性質(zhì)結(jié)合題目條件論證是解題的關(guān)鍵.24、(1)見詳解;(2)點O的位置滿足兩個要求:AO=BC,且點O不在射線CD、射線BE上.理由見詳解【分析】(1)根據(jù)三角形的中位線定理可證得DE∥GF,DE=GF,即可證得結(jié)論;(2)根據(jù)三角形的中位線定理結(jié)合菱形的判定方法分析即可.【詳解】(1)∵D、E分別是邊AB、AC的中點.∴DE∥BC,DE=BC.同理,GF∥BC,GF=BC.∴DE∥GF,DE=GF.∴四邊形DEFG是平行四邊形;(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論