




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
南京市聯(lián)合體2025屆九年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m2.下列等式從左到右變形中,屬于因式分解的是()A. B.C. D.3.某校科技實踐社團制作實踐設(shè)備,小明的操作過程如下:①小明取出老師提供的圓形細鐵環(huán),先通過在圓一章中學(xué)到的知識找到圓心O,再任意找出圓O的一條直徑標記為AB(如圖1),測量出AB=4分米;②將圓環(huán)進行翻折使點B落在圓心O的位置,翻折部分的圓環(huán)和未翻折的圓環(huán)產(chǎn)生交點分別標記為C、D(如圖2);③用一細橡膠棒連接C、D兩點(如圖3);④計算出橡膠棒CD的長度.小明計算橡膠棒CD的長度為()A.2分米 B.2分米 C.3分米 D.3分米4.⊙O是半徑為1的圓,點O到直線L的距離為3,過直線L上的任一點P作⊙O的切線,切點為Q;若以PQ為邊作正方形PQRS,則正方形PQRS的面積最小為()A.7 B.8 C.9 D.105.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.平行四邊形 B.菱形 C.等邊三角形 D.等腰直角三角形6.下列方程中是關(guān)于的一元二次方程的是()A. B. C. D.7.如圖圖形中,是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.8.如圖,在矩形ABCD中,AB=12,P是AB上一點,將△PBC沿直線PC折疊,頂點B的對應(yīng)點是G,過點B作BE⊥CG,垂足為E,且在AD上,BE交PC于點F,則下列結(jié)論,其中正確的結(jié)論有()①BP=BF;②若點E是AD的中點,那么△AEB≌△DEC;③當AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當BP=9時,BE?EF=1.A.2個 B.3個 C.4個 D.5個9.在平面直角坐標系中,函數(shù)的圖象經(jīng)過變換后得到的圖象,則這個變換可以是()A.向左平移2個單位 B.向右平移2個單位C.向上平移2個單位 D.向下平移2個單位10.點P(3,5)關(guān)于原點對稱的點的坐標是()A.(﹣3,5) B.(3,﹣5) C.(5,3) D.(﹣3,﹣5)11.如圖,為了測量池塘邊A、B兩地之間的距離,在線段AB的同側(cè)取一點C,連結(jié)CA并延長至點D,連結(jié)CB并延長至點E,使得A、B分別是CD、CE的中點,若DE=18m,則線段AB的長度是()A.9m B.12m C.8m D.10m12.拋物線的頂點坐標為A. B. C. D.二、填空題(每題4分,共24分)13.已知二次函數(shù)的圖象如圖所示,并且關(guān)于的一元二次方:有兩個不相等的實數(shù)根,下列結(jié)論:①;②;③;④,其中正確的有__________.14.如圖,矩形ABCD中,AD=2,AB=5,P為CD邊上的動點,當△ADP與△BCP相似時,DP=__.15.如圖,在平面直角坐標系xOy中,點A在函數(shù)y=(x>0)的圖象上,AC⊥x軸于點C,連接OA,則△OAC面積為_____.16.如圖,在⊙O中,分別將弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,若⊙O的半徑為4,則四邊形ABCD的面積是__________________.17.如圖,在平面直角坐標系中,拋物線與軸的正半軸相交于點,其頂點為,將這條拋物線繞點旋轉(zhuǎn)后得到的拋物線與軸的負半軸相交于點,其頂點為,連接,,,,則四邊形的面積為__________;18.某種藥原來每瓶售價為40元,經(jīng)過兩次降價,現(xiàn)在每瓶售價為25.6元,若設(shè)平均每次降低的百分率為,根據(jù)題意列出方程為______________________.三、解答題(共78分)19.(8分)如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠AOC=116°,則∠ADC的角度是_____.20.(8分)如圖,直線經(jīng)過⊙上的點,直線與⊙交于點和點,與⊙交于點,連接,.已知,,,.(1)求證:直線是⊙的切線;(2)求的長.21.(8分)如圖,直線與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A,B兩點.(1)求拋物線的解析式.(2)點P是第一象限拋物線上的一點,連接PA,PB,PO,若△POA的面積是△POB面積的倍.①求點P的坐標;②點Q為拋物線對稱軸上一點,請求出QP+QA的最小值.22.(10分)解方程23.(10分)如圖,已知拋物線y=x2-x-3與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.(1)直接寫出A、D、C三點的坐標;(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標;(3)設(shè)點C關(guān)于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標;若不存在,請說明理由.24.(10分)如圖,拋物線與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=﹣1和x=3時,y值相等.直線y=與拋物線有兩個交點,其中一個交點的橫坐標是6,另一個交點是這條拋物線的頂點M.(1)求這條拋物線的表達式.(2)動點P從原點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發(fā),在線段BC上以每秒2個單位長度的速度向點C運動,當一個點到達終點時,另一個點立即停止運動,設(shè)運動時間為t秒.①求t的取值范圍.②若使△BPQ為直角三角形,請求出符合條件的t值;③t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.25.(12分)如圖,小明欲利用測角儀測量樹的高度.已知他離樹的水平距離BC為10m,測角儀的高度CD為1.5m,測得樹頂A的仰角為33°.求樹的高度AB.(參考數(shù)據(jù):sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)26.如圖,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;(1)把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,得到△A1B1C1,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B1C1.
參考答案一、選擇題(每題4分,共48分)1、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.【點睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題.2、D【分析】直接利用因式分解的定義分析得出答案.【詳解】A.,屬于整式乘法運算,不符合因式分解的定義,故此選項錯誤;B.,右邊不是整式的積的形式,不符合因式分解的定義,故此選項錯誤;C.,屬于整式乘法運算,不符合因式分解的定義,故此選項錯誤;D.),屬于因式分解,符合題意;故選:D.【點睛】本題主要考查因式分解的定義:把一個多項式化為幾個整式的積的形式,這種變形叫做把這個多項式因式分解.3、B【分析】連接OC,作OE⊥CD,根據(jù)垂徑定理和勾股定理求解即可.【詳解】解:連接OC,作OE⊥CD,如圖3,∵AB=4分米,∴OC=2分米,∵將圓環(huán)進行翻折使點B落在圓心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故選:B.【點睛】此題綜合運用了勾股定理以及垂徑定理.注意構(gòu)造由半徑、半弦、弦心距組成的直角三角形進行有關(guān)的計算.4、B【分析】連接OQ、OP,作于H,如圖,則OH=3,根據(jù)切線的性質(zhì)得,利用勾股定理得到,根據(jù)垂線段最短,當OP=OH=3時,OP最小,于是PQ的最小值為,即可得到正方形PQRS的面積最小值1.【詳解】解:連接OQ、OP,作于H,如圖,則OH=3,∵PQ為的切線,∴在Rt中,,當OP最小時,PQ最小,正方形PQRS的面積最小,當OP=OH=3時,OP最小,所以PQ的最小值為,所以正方形PQRS的面積最小值為1故選B5、B【解析】試題解析:A.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤,不合題意;B.是軸對稱圖形,也是中心對稱圖形,故此選項正確,符合題意;C.是軸對稱圖形,不是中心對稱圖形,故此選項錯誤,不合題意;D.無法確定是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤,不合題意.故選B.6、C【分析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是整式方程,故本選項錯誤;B、當=0時,方程就不是一元二次方程,故本選項錯誤;C、由原方程,得,符合一元二次方程的要求,故本選項正確;D、方程中含有兩個未知數(shù),故本選項錯誤.故選C.【點睛】此題考查的是一元二次方程的判斷,掌握一元二次方程的定義是解決此題的關(guān)鍵.7、D【解析】試題解析:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;B、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉(zhuǎn)后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;C、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,又是中心對稱圖形,故此選項符合題意;故選D.8、C【分析】①根據(jù)折疊的性質(zhì)∠PGC=∠PBC=90°,∠BPC=∠GPC,從而證明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性質(zhì)得出AE=DE,即可利用條件證明△ABE≌△DCE;③先根據(jù)題意證明△ABE∽△DEC,再利用對應(yīng)邊成比例求出DE即可;④根據(jù)勾股定理和折疊的性質(zhì)得出△ECF∽△GCP,再利用對應(yīng)邊成比例求出BP,即可算出sin值;⑤連接FG,先證明?BPGF是菱形,再根據(jù)菱形的性質(zhì)得出△GEF∽△EAB,再利用對應(yīng)邊成比例求出BE·EF.【詳解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折疊得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正確;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中點,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正確;③當AD=25時,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,設(shè)AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正確;④由③知:CE=,BE=,由折疊得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,設(shè)BP=BF=PG=y(tǒng),∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正確;⑤如圖,連接FG,由①知BF∥PG,∵BF=PG=PB,∴?BPGF是菱形,∴BP∥GF,F(xiàn)G=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE?EF=AB?GF=12×9=1;故⑤正確,所以本題正確的有①②③⑤,4個,故選:C.【點睛】本題考查矩形與相似的結(jié)合、折疊的性質(zhì),關(guān)鍵在于通過基礎(chǔ)知識證明出所需結(jié)論,重點在于相似對應(yīng)邊成比例.9、A【分析】將兩個二次函數(shù)均化為頂點式,根據(jù)兩頂點坐標特征判斷平移方向和平移距離.【詳解】,頂點坐標為,,頂點坐標為,所以函數(shù)的圖象向左平移2個單位后得到的圖象.故選:A【點睛】本題考查二次函數(shù)圖象的特征,根據(jù)頂點坐標確定變換方式是解答此題的關(guān)鍵.10、D【分析】根據(jù)關(guān)于原點對稱的點的坐標特點:兩個點關(guān)于原點對稱時,橫縱坐標的坐標符號均相反,根據(jù)這一特征求出對稱點坐標.【詳解】解:點P(3,5)關(guān)于原點對稱的點的坐標是(-3,-5),
故選D.【點睛】本題主要考查了關(guān)于原點對稱的點的坐標特點,關(guān)鍵是掌握點的變化規(guī)律.11、A【分析】根據(jù)三角形的中位線定理解答即可.【詳解】解:∵A、B分別是CD、CE的中點,DE=18m,∴AB=DE=9m,故選:A.【點睛】本題考查了三角形的中位線定理:三角形的中位線平行于第三邊并且等于第三邊的一半.12、B【分析】利用頂點公式,進行計算【詳解】頂點坐標為故選B.【點睛】本題考查二次函數(shù)的性質(zhì),熟練運用拋物線頂點的公式是解題關(guān)鍵.二、填空題(每題4分,共24分)13、③【分析】①利用可以用來判定二次函數(shù)與x軸交點個數(shù),即可得出答案;②根據(jù)圖中當時的值得正負即可判斷;③由函數(shù)開口方向可判斷的正負,根據(jù)對稱軸可判斷的正負,再根據(jù)函數(shù)與軸交點可得出的正負,即可得出答案;④根據(jù)方程可以看做函數(shù),就相當于函數(shù)(a0)向下平移個單位長度,且與有兩個交點,即可得出答案.【詳解】解:①∵函數(shù)與軸有兩個交點,∴,所以①錯誤;②∵當時,,由圖可知當,,∴,所以②錯誤;③∵函數(shù)開口向上,∴,∵對稱軸,,∴,∵函數(shù)與軸交于負半軸,∴,∴,所以③正確;④方程可以看做函數(shù)當y=0時也就是與軸交點,∵方程有兩個不相等的實數(shù)根,∴函數(shù)與軸有兩個交點∵函數(shù)就相當于函數(shù)向下平移個單位長度∴由圖可知當函數(shù)向上平移大于2個單位長度時,交點不足2個,∴,所以④錯誤.正確答案為:③【點睛】本題考查了二次函數(shù)與系數(shù)的關(guān)系:可以用來判定二次函數(shù)與x軸交點的個數(shù),當時,函數(shù)與x軸有2個交點;當時,函數(shù)與x軸有1個交點;當時,函數(shù)與x軸沒有交點.;二次函數(shù)系數(shù)中決定開口方向,當時,開口向上,當時,開口向下;共同決定對稱軸的位置,可以根據(jù)“左同右異”來判斷;決定函數(shù)與軸交點.14、1或4或2.1.【分析】需要分類討論:△APD∽△PBC和△PAD∽△PBC,根據(jù)該相似三角形的對應(yīng)邊成比例求得DP的長度.【詳解】設(shè)DP=x,則CP=1-x,本題需要分兩種情況情況進行討論,①、當△PAD∽△PBC時,=∴,解得:x=2.1;②、當△APD∽△PBC時,=,即=,解得:x=1或x=4,綜上所述DP=1或4或2.1【點晴】本題主要考查的就是三角形相似的問題和動點問題,首先將各線段用含x的代數(shù)式進行表示,然后看是否有相同的角,根據(jù)對應(yīng)角的兩邊對應(yīng)成比例將線段寫成比例式的形式,然后分別進行計算得出答案.在解答這種問題的時候千萬不能出現(xiàn)漏解的現(xiàn)象,每種情況都要考慮到位.15、1【分析】根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義可得S△OAC=×2=1,再相加即可.【詳解】解:∵函數(shù)y=(x>0)的圖象經(jīng)過點A,AC⊥x軸于點C,∴S△OAC=×2=1,故答案為1.【點睛】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義,掌握過反比例函數(shù)圖象上的點向x軸或y軸作垂線,這一點和垂足、原點組成的三角形的面積的計算方法是解本題的關(guān)鍵.16、【分析】作OH⊥AB,延長OH交于E,反向延長OH交CD于G,交于F,連接OA、OB、OC、OD,根據(jù)折疊的對稱性及三角形全等,證明AB=CD,又因AB∥CD,所以四邊形ABCD是平行四邊形,由平行四邊形面積公式即可得解.【詳解】如圖,作OH⊥AB,垂足為H,延長OH交于E,反向延長OH交CD于G,交于F,連接OA、OB、OC、OD,則OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿兩條互相平行的弦AB、CD折疊,折疊后的弧均過圓心,∴OH=HE=,OG=GF=,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG=HB=GD∴AB=CD又∵AB∥CD∴四邊形ABCD是平行四邊形,在Rt△OHA中,由勾股定理得:AH=∴AB=∴四邊形ABCD的面積=AB×GH=.故答案為:.【點睛】本題考查圓中折疊的對稱性及平行四邊形的證明,關(guān)鍵是作輔助線,本題也可通過邊、角關(guān)系證出四邊形ABCD是矩形.17、32【分析】利用拋物線的解析式算出M的坐標和A的坐標,根據(jù)對稱算出B和N的坐標,再利用兩個三角形的面積公式計算和即可.【詳解】∵,∴M(2,-4),令,解得x1=0,x2=4,∴A(0,4),∵B,N分別關(guān)于原點O的對稱點是A,M,∴B(-4,-0),N(-2,4),∴AB=8,∴四邊形AMBN的面積為:2S△ABM=,故答案為:32.【點睛】本題考查二次函數(shù)的性質(zhì),關(guān)鍵在于利用對稱性得出坐標點.18、【分析】設(shè)平均每次降低的百分率為x,根據(jù)某種藥原來每瓶為40元,經(jīng)過兩次降價,現(xiàn)在每瓶售價25.1元列出方程,解方程即可.【詳解】設(shè)平均每次降低的百分率為x,根據(jù)題意得:40(1﹣x)2=25.1.故答案為:40(1﹣x)2=25.1.【點睛】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再求解.三、解答題(共78分)19、58°【分析】直接利用圓周角定理求解.【詳解】∵∠AOC和∠ADC都對,∴∠ADC=∠AOC=×116°=58°.故答案為:58°.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.20、(1)見解析;(2)【解析】(1)欲證明直線AB是O的切線,只要證明OC⊥AB即可.
(2)作ON⊥DF于N,延長DF交AB于M,在RT△CDM中,求出DM、CM即可解決問題.【詳解】(1)證明:連結(jié)OC,∵OA=OB,AC=CB∴,∵點C在⊙O上,∴AB是⊙O的切線,(2)作于N,延長DF交AB于M.∵,∴DN=NF=3,在中,∵,OD=5,DN=3,∴又∵,,∴∴FM//OC∵,∴,∴四邊形OCMN是矩形,∴CM=ON=4,MN=OC=5在中,∵,∴.【點睛】本題考查了切線的判定,矩形的判定及性質(zhì),結(jié)合圖形作合適的輔助線,想法證明OC⊥AB時解題的關(guān)鍵.21、(1);(2)①點P的坐標為(,1);②【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法求出拋物線解析式;
(2)設(shè)出點P的坐標,①用△POA的面積是△POB面積的倍,建立方程求解即可;②利用對稱性找到最小線段,用兩點間距離公式求解即可.【詳解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵拋物線經(jīng)過A、B兩點,∴解得∴拋物線的解析式為.(2)①設(shè)點P的坐標為(,),過點P分別作x軸、y軸的垂線,垂足分別為D、E.∴∵∴∴,∵點P在第一象限,所以∴點P的坐標為(,1)②設(shè)拋物線與x軸的另一交點為C,則點C的坐標為(,)連接PC交對稱軸一點,即Q點,則PC的長就是QP+QA的最小值,所以QP+QA的最小值就是.【點睛】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積,對稱性,解本題的關(guān)鍵是求拋物線解析式.22、,.【解析】分析:用配方法解一元二次方程即可.還可以用公式法或者因式分解法.詳解:方法一:移項,得,二次項系數(shù)化為1,得,,,由此可得,,.方法二:方程整理得:分解因式得:(x?1)(2x?1)=0,解得:,.點睛:考查解一元二次方程,常見的方法有:直接開方法,配方法,公式法和因式分解法,觀察題目選擇合適的方法.23、(1)A點坐標為(4,0),D點坐標為(-2,0),C點坐標為(0,-3);(2)或或;(3)在拋物線上存在一點P,使得以點A、B、C、P四點為頂點所構(gòu)成的四邊形為梯形;點P的坐標為(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A點和D點坐標;令x=0,求出y=-3,可確定C點坐標;(2)根據(jù)兩個同底三角形面積相等得出它們的高相等,即縱坐標絕對值相等,得出點M的縱坐標為:,分別代入函數(shù)解析式求解即可;(3)分BC為梯形的底邊和BC為梯形的腰兩種情況討論即可.【詳解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)過點C做軸的平行線,交拋物線與點,做點C關(guān)于軸的對稱點,過點做軸的平行線,交拋物線與點,如下圖所示:∵△MAD的面積與△CAD的面積相等,且它們是等底三角形∴點M的縱坐標絕對值跟點C的縱坐標絕對值相等∵點C的縱坐標絕對值為:∴點M的縱坐標絕對值為:∴點M的縱坐標為:當點M的縱坐標為時,則解得:或(即點C,舍去)∴點的坐標為:當點M的縱坐標為時,則解得:∴點的坐標為:,點的坐標為:∴點M的坐標為:或或;(3)存在,分兩種情況:①如圖,當BC為梯形的底邊時,點P與D重合時,四邊形ADCB是梯形,此時點P為(-2,0).②如圖,當BC為梯形的腰時,過點C作CP//AB,與拋物線交于點P,∵點C,B關(guān)于拋物線對稱,∴B(2,-3)設(shè)直線AB的解析式為,則,解得.∴直線AB的解析式為.∵CP//AB,∴可設(shè)直線CP的解析式為.∵點C在直線CP上,∴.∴直線CP的解析式為.聯(lián)立,解得,∴P(6,6).綜上所述,在拋物線上存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形,點P的坐標為(-2,0)或(6,6).考點:1.二次函數(shù)綜合題;2.待定系數(shù)法的應(yīng)用;3.曲線上點的坐標與方程的關(guān)系;4.軸對稱的應(yīng)用(最短線路問題);5.二次函數(shù)的性質(zhì);6.梯形存在性問題;7.分類思想的應(yīng)用.24、(1);(2)①,②t的值為或,③當t=2時,四邊形ACQP的面積有最小值,最小值是.【分析】(1)求出對稱軸,再求出y=與拋物線的兩個交點坐標,將其代入拋物線的頂點式即可;(2)①先求出A、B、C的坐標,寫出OB、OC的長度,再求出BC的長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025網(wǎng)絡(luò)平臺專車服務(wù)經(jīng)營合同(B類)
- 2025解除加工合同的證明書模板
- 轉(zhuǎn)賣房屋合同協(xié)議書
- 二手出租房買賣合同協(xié)議書
- 草料加工合同協(xié)議書模板
- 2025有關(guān)房屋抵押合同
- 2025農(nóng)業(yè)無人機租賃服務(wù)合同協(xié)議書范本
- 金融衍生品交易財務(wù)擔(dān)保合同會計處理與風(fēng)險控制
- 車庫租賃合同范本(含夜間停車優(yōu)惠)
- 2025年傳統(tǒng)文化與現(xiàn)代教育考試試題及答案
- 上海2025年上海電機學(xué)院教師招聘100人筆試歷年參考題庫附帶答案詳解
- 2025年山東省新動能基金管理有限公司招聘筆試參考題庫含答案解析
- DBJ04T 246-2024 建筑節(jié)能門窗應(yīng)用技術(shù)規(guī)程
- 電力公司綜合辦公室安全職責(zé)
- 幕墻質(zhì)量策劃
- 兒童故事繪本愚公移山課件模板
- “SMART?BIM”智建時代-BIM技術(shù)應(yīng)用知到智慧樹章節(jié)測試課后答案2024年秋青島工學(xué)院
- 智聯(lián)國企行測筆試題庫
- 【MOOC】西方園林歷史與藝術(shù)-北京林業(yè)大學(xué) 中國大學(xué)慕課MOOC答案
- 首都經(jīng)濟貿(mào)易大學(xué)《英語基礎(chǔ)寫作》2022-2023學(xué)年第一學(xué)期期末試卷
- -110-千伏輸變電工程地質(zhì)災(zāi)害危險性評估
評論
0/150
提交評論