版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.二次函數(shù)y=(x﹣1)2+2,它的圖象頂點坐標是()A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)2.下列式子中表示是的反比例函數(shù)的是()A. B. C. D.3.已知一塊圓心角為的扇形紙板,用它做一個圓錐形的圣誕帽(接縫忽略不計)圓錐的底面圓的直徑是,則這塊扇形紙板的半徑是()A. B. C. D.4.用配方法將二次函數(shù)y=x2﹣8x﹣9化為y=a(x﹣h)2+k的形式為()A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣255.下列四個點,在反比例函數(shù)y=圖象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)6.二次函數(shù)的圖像如圖所示,它的對稱軸為直線,與軸交點的橫坐標分別為,,且.下列結論中:①;②;③;④方程有兩個相等的實數(shù)根;⑤.其中正確的有()A.②③⑤ B.②③ C.②④ D.①④⑤7.若∽,相似比為,則與的周長比為()A. B. C. D.8.如圖,保持△ABC的三個頂點的橫坐標不變,縱坐標都乘﹣1,畫出坐標變化后的三角形,則所得三角形與原三角形的關系是()A.關于x軸對稱B.關于y軸對稱C.將原圖形沿x軸的負方向平移了1個單位D.將原圖形沿y軸的負方向平移了1個單位9.如圖,點M為反比例函數(shù)y=上的一點,過點M作x軸,y軸的垂線,分別交直線y=-x+b于C,D兩點,若直線y=-x+b分別與x軸,y軸相交于點A,B,則AD·BC的值是()A.3 B.2 C.2 D.10.某藥品原價每盒28元,為響應國家解決老百姓看病貴的號召,經(jīng)過連續(xù)兩次降價,現(xiàn)在售價每盒16元,設該藥品平均每次降價的百分率是x,由題意,所列方程正確的是()A.28(1-2x)=16 B.16(1+2x)=28 C.28(1-x)2=16 D.16(1+x)2=2811.某校數(shù)學課外小組,在坐標紙上為某濕地公園的一塊空地設計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負實數(shù)a的整數(shù)部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵樹種植點的坐標應為()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)12.拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖所示,則以下結論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有兩個相等的實數(shù)根.其中正確結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.計算的結果是_______.14.在Rt△ABC中,∠C=90°,如果AC=9,cosA=,那么AB=________.15.如圖,在中,,點為的中點.將繞點逆時針旋轉得到,其中點的運動路徑為,則圖中陰影部分的面積為______.16.一元二次方程x2﹣4=0的解是._________17.由n個相同的小正方體堆成的幾何體,其視圖如下所示,則n的最大值是_____.18.已知實數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡=_____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣1,0),且tan∠ACO=1.(1)求該反比例函數(shù)和一次函數(shù)的解析式;(1)求點B的坐標.20.(8分)已知關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程有一個根為負數(shù),求的取值范圍.21.(8分)如圖,在△ABC中,∠C=90°,AC=6cm,BC=8m,點P從點A出發(fā)沿邊AC向點C以1cm/s的速度移動,點Q從點C出發(fā)沿CB邊向點B以2cm/s的速度移動,當其中一點到達終點時,另一點也隨之停止運動.(1)如果點P,Q同時出發(fā),經(jīng)過幾秒鐘時△PCQ的面積為8cm2?(2)如果點P,Q同時出發(fā),經(jīng)過幾秒鐘時以P、C、Q為頂點的三角形與△ABC相似?22.(10分)如圖,在△ABC中,∠ACB=90o,∠ABC=45o,點O是AB的中點,過A、C兩點向經(jīng)過點O的直線作垂線,垂足分別為E、F.(1)如圖①,求證:EF=AE+CF.(2)如圖②,圖③,線段EF、AE、CF之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.23.(10分)如圖,我國海監(jiān)船在處發(fā)現(xiàn)正北方向處有一艘可疑船只,正沿南偏東方向航行,我海監(jiān)船迅速沿北偏東方向去攔裁,經(jīng)歷小時剛好在處將可疑船只攔截,已知我海監(jiān)船航行的速度是每小時海里,求可疑船只航行的距離.24.(10分)某商店經(jīng)銷的某種商品,每件成本為30元.經(jīng)市場調查,當售價為每件70元時,可銷售20件.假設在一定范圍內(nèi),售價每降低2元,銷售量平均增加4件.如果降價后商店銷售這批商品獲利1200元,問這種商品每件售價是多少元?25.(12分)定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.26.已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B.(1)求拋物線解析式;(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【解析】二次函數(shù)的頂點式是,,其中是這個二次函數(shù)的頂點坐標,根據(jù)頂點式可直接寫出頂點坐標.【詳解】解:故選:D.【點睛】根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.2、D【解析】根據(jù)反比例函數(shù)的定義逐項分析即可.【詳解】A.是一次函數(shù),故不符合題意;B.二次函數(shù),故不符合題意;C.不是反比例函數(shù),故不符合題意;D.是反比例函數(shù),符合題意;故選D.【點睛】本題考查了反比例函數(shù)的定義,一般地,形如(k為常數(shù),k≠0)的函數(shù)叫做反比例函數(shù).3、B【分析】利用底面周長=展開圖的弧長可得【詳解】設這個扇形鐵皮的半徑為rcm,由題意得解得r=1.故這個扇形鐵皮的半徑為1cm,故選:B.【點睛】本題考查了圓錐的計算,解答本題的關鍵是確定圓錐的底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.4、C【分析】直接利用配方法進而將原式變形得出答案.【詳解】y=x2-8x-9=x2-8x+16-1=(x-4)2-1.故選C.【點睛】此題主要考查了二次函數(shù)的三種形式,正確配方是解題關鍵.5、D【解析】由可得xy=6,故選D.6、A【分析】利用拋物線開口方向得到a<0,利用對稱軸位置得到b>0,利用拋物線與y軸的交點在x軸下方得c<0,則可對①進行判斷;根據(jù)二次函數(shù)的對稱性對②③進行判斷;利用拋物線與直線y=2的交點個數(shù)對④進行判斷,利用函數(shù)與坐標軸的交點列出不等式即可判斷⑤.【詳解】∵拋物線開口向下,∴a<0,∵對稱軸為直線∴b=-2a>0∵拋物線與y軸的交點在x軸下方,∴c<-1,∴abc>0,所以①錯誤;∵,對稱軸為直線∴故,②正確;∵對稱軸x=1,∴當x=0,x=2時,y值相等,故當x=0時,y=c<0,∴當x=2時,y=,③正確;如圖,作y=2,與二次函數(shù)有兩個交點,故方程有兩個不相等的實數(shù)根,故④錯誤;∵當x=-1時,y=a-b+c=3a+c>0,當x=0時,y=c<-1∴3a>1,故,⑤正確;故選A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置.當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c).也考查了二次函數(shù)的性質.7、B【分析】根據(jù)相似三角形的性質:周長之比等于相似比解答即可.【詳解】解:∵∽,相似比為,∴與的周長比為.故選:B.【點睛】本題考查的是相似三角形的性質,屬于應知應會題型,熟練掌握相似三角形的性質是解題關鍵.8、A【分析】根據(jù)“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)”,可知所得的三角形與原三角形關于x軸對稱.【詳解】解:∵縱坐標乘以﹣1,∴變化前后縱坐標互為相反數(shù),又∵橫坐標不變,∴所得三角形與原三角形關于x軸對稱.故選:A.【點睛】本題考查平面直角坐標系中對稱點的規(guī)律.解題關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).9、C【分析】設點M的坐標為(),將代入y=-x+b中求出C點坐標,同理求出D點坐標,再根據(jù)兩點之間距離公式即可求解.【詳解】解:設點M的坐標為(),將代入y=-x+b中,得到C點坐標為(),將代入y=-x+b中,得到D點坐標為(),∵直線y=-x+b分別與x軸,y軸相交于點A,B,∴A點坐標(0,b),B點坐標為(b,0),∴AD×BC=,故選:C.【點睛】本題考查的是一次函數(shù)及反比例函數(shù)的性質,先設出M點坐標,用M點的坐標表示出C、D兩點的坐標是解答此題的關鍵.10、C【解析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應數(shù)值代入即可求解.【詳解】解:設該藥品平均每次降價的百分率是x,則第一次降價后的價格為28×(1﹣x)元,兩次連續(xù)降價后的售價是在第一次降價后的價格的基礎上降低x,為28×(1﹣x)×(﹣x)元,則列出的方程是28(1﹣x)2=1.故選:C.11、D【分析】根據(jù)已知分別求出1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點的坐標特點,進而求解.【詳解】解:由題可知1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通過以上數(shù)據(jù)可得,P點的縱坐標5個一組循環(huán),∵2119÷5=413…4,∴當k=2119時,P點的縱坐標是4,橫坐標是413+1=414,∴P(414,4),故選:D.【點睛】本題考查點的坐標和探索規(guī)律;能夠理解題意,通過已知條件探索點的坐標循環(huán)規(guī)律是解題的關鍵.12、B【分析】先從二次函數(shù)圖像獲取信息,運用二次函數(shù)的性質一—判斷即可.【詳解】解:∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>0,故①錯誤;∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,且拋物線開口向下,∴當x=1時,有y=a+b+c<0,故②正確;∵函數(shù)圖像的頂點為(-1,2)∴a-b+c=2,又∵由函數(shù)的對稱軸為x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正確;由①得b2-4ac>0,則ax2+bx+c=0有兩個不等的實數(shù)根,故④錯誤;綜上,正確的有兩個.故選:B.【點睛】本題考查了二次函數(shù)的圖像與系數(shù)的關系,從二次函數(shù)圖像上獲取有用信息和靈活運用數(shù)形結合思想是解答本題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)分式的加減運算法則,先通分,再加減.【詳解】解:原式====.故答案為:.【點睛】本題考查了分式的加減運算,解題的關鍵是掌握運算法則和運算順序.14、27【解析】試題解析:解得:故答案為15、【分析】連接,設AC、DE交于點N,如圖,根據(jù)題意可得的度數(shù)和BM的長度,易證為的中位線,故MN可求,然后利用S陰影=S扇形MBE,代入相關數(shù)據(jù)求解即可.【詳解】解:連接,設AC、DE交于點N,如圖,由題意可知,,∴,∵,,且為的中點,∴為的中位線,∴,,∴S陰影=S扇形MBE.【點睛】本題考查了旋轉的性質、三角形的中位線定理、扇形面積的計算等知識,屬于常考題型,熟練掌握旋轉的性質、將所求不規(guī)則圖形的面積轉化為規(guī)則圖形的面積的和差是解題的關鍵.16、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.17、1【分析】根據(jù)主視圖和俯視圖得出幾何體的可能堆放,從而即可得出答案.【詳解】綜合主視圖和俯視圖,底面最多有個,第二層最多有個,第三層最多有個則n的最大值是故答案為:1.【點睛】本題考查了三視圖中的主視圖和俯視圖,掌握三視圖的相關概念是解題關鍵.18、﹣a+b【分析】根據(jù)數(shù)軸判斷出a、b、c的正負情況以及絕對值的大小,然后根據(jù)絕對值和二次根式的性質去掉根號和絕對值號,再進行計算即可得解.【詳解】解:由圖可知:a<b<0<c,而且,
∴a+c<0,b+c<0,
∴,
故答案為:.【點睛】本題考查了二次根式的性質與化簡,絕對值的性質,根據(jù)數(shù)軸判斷出a、b、c的情況是解題的關鍵.三、解答題(共78分)19、(1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為y=1x+4;(1)點B坐標為(﹣2,﹣1).【分析】(1)先過點A作AD⊥x軸,根據(jù)tan∠ACO=1,求得點A的坐標,進而根據(jù)待定系數(shù)法計算兩個函數(shù)解析式;(1)先聯(lián)立兩個函數(shù)解析式,再通過解方程求得交點B的坐標即可.【詳解】解:(1)過點A作AD⊥x軸,垂足為D.由A(n,6),C(﹣1,0)可得,OD=n,AD=6,CO=1∵tan∠ACO=1,∴=1,即,∴n=1,∴A(1,6).將A(1,6)代入反比例函數(shù),得m=1×6=6,∴反比例函數(shù)的解析式為.將A(1,6),C(﹣1,0)代入一次函數(shù)y=kx+b,可得:,解得:,∴一次函數(shù)的解析式為y=1x+4;(1)由可得,,解得=1,=﹣2.∵當x=﹣2時,y=﹣1,∴點B坐標為(﹣2,﹣1).【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,利用數(shù)形結合思想解題是關鍵.20、(1)見解析;(2)【分析】(1)計算方程根的判別式,判斷其符號即可;
(2)求方程兩根,結合條件則可求得m的取值范圍.【詳解】(1),∵,∴方程總有實數(shù)根;(2)∵,∴,,∵方程有一個根為負數(shù),∴,∴.【點睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關系是解題的關鍵.21、(1)1s或2s;(1)當t=或t=時,以P、C、Q為頂點的三角形與△ABC相似.【分析】(1)設P、Q同時出發(fā),x秒鐘后,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,依據(jù)△PCQ的面積為8,由此等量關系列出方程求出符合題意的值.(1)分兩種情況討論,依據(jù)相似三角形對應邊成比例列方程求解即可.【詳解】(1)設xs后,可使△PCQ的面積為8cm1.由題意得,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,則(6﹣x)?1x=8,整理得x1﹣6x+8=0,解得x1=1,x1=2.所以P、Q同時出發(fā),1s或2s后可使△PCQ的面積為8cm1.(1)設t秒后以P、C、Q為頂點的三角形與△ABC相似,則PC=6﹣t,QC=1t.當△PCQ∽△ACB時,=,即=,解得:t=.當△PCQ∽△BCA時,=,即=,解得:t=.綜上所述,當t=或t=時,以P、C、Q為頂點的三角形與△ABC相似.【點睛】本題考查一元二次方程的應用,三角形的面積公式的求法和一元二次方程的解的情況.關鍵在于讀懂題意,找出之間的等量關系,列出方程求解.22、(1)見解析;(2)圖②:EF=AE+CF圖③:EF=AE-CF,見解析【分析】(1)連接OC,運用AAS證△AOE≌△OCF即可;(2)按(1)中的方法,連接OC,證明△AOE≌△OCF,即可得出結論【詳解】(1)連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如圖②,連接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【點睛】本題主要考查全等三角形的判定和性質,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(即全等三角形的對應邊相等、對應角相等)是解題的關鍵.23、70海里.【分析】過作于點,分別利用三角函數(shù)解和,即可進行求解.【詳解】過作于點,根據(jù)題意得:(海里),在中,(海里),在中,(海里),答:可疑船只航行的距離為70海里.【點睛】本題考查了解直角三角形的應用,用到的知識點是方向角含義、三角函數(shù)的定義,關鍵是根據(jù)題意畫出圖形,構造直角三角形.24、每件商品售價60元或50元時,該商店銷售利潤達到1200元.【分析】根據(jù)題意得出,(售價-成本)(原來的銷量+2降低的價格)=1200,據(jù)此列方程求解即可.【詳解】解:設每件商品應降價元時,該商店銷售利潤為1200元.根據(jù)題意,得整理得:,解這個方程得:,.所以,或50答:每件商品售價60元或50元時,該商店銷售利潤達到1200元.【點睛】本題考查的知識點是生活中常見的商品打折銷售問題,弄清題目中的關鍵概念,找出題目中隱含的等量關系式是解決問題的關鍵.25、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當∠ABD=∠DBC=β時,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當∠ABD=∠DBC=β時,則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點A作AH⊥BC于點H,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當∠ABD=∠C=β時,過點A作AH⊥BE交BE于點H,交BD于點G,則點G是圓的圓心(BE的中垂線與直徑的交點),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版人工智能技術研發(fā)與應用合同15篇
- 常州2025版二手房過戶稅費處理與過戶手續(xù)辦理合同2篇
- 二零二五版智慧城市建設合作合同范本2篇
- 二零二五版在線教育管理系統(tǒng)定制開發(fā)合同3篇
- 二零二五版ISO9001質量管理體系認證與質量管理體系審核與監(jiān)督合同3篇
- 水電工程2025年度施工安全評估合同2篇
- 二零二五版LED顯示屏戶外廣告位租賃合同協(xié)議3篇
- 二零二五年海鮮餐飲業(yè)特色菜品開發(fā)與銷售合同3篇
- 二零二五年度虛擬現(xiàn)實游戲開發(fā)電子合同承諾3篇
- 二零二五版智能零售企業(yè)兼職銷售員勞動合同3篇
- 2025新北師大版英語七年級下單詞表
- 2024公路瀝青路面結構內(nèi)部狀況三維探地雷達快速檢測規(guī)程
- 《智慧城市概述》課件
- 2024年北京市家庭教育需求及發(fā)展趨勢白皮書
- GB/T 45089-20240~3歲嬰幼兒居家照護服務規(guī)范
- 中建道路排水工程施工方案
- 拆機移機合同范例
- 智能停車充電一體化解決方案
- 化學驗室安全培訓
- 天書奇譚美術課件
- GB/T 18916.15-2024工業(yè)用水定額第15部分:白酒
評論
0/150
提交評論