版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省濮陽市油田實驗學校數(shù)學九上期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉.若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點,則∠OAB大小的變化趨勢為()A.逐漸變小 B.逐漸變大 C.時大時小 D.保持不變2.某超市一月份的營業(yè)額為200萬元,已知第一季度的總營業(yè)額共1000萬元,如果平均每月增長率為x,則由題意列方程應為()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10003.設,,是拋物線上的三點,則,,的大小關系為()A. B. C. D.4.如圖,拋物線與直線交于,兩點,與直線交于點,將拋物線沿著射線方向平移個單位.在整個平移過程中,點經(jīng)過的路程為()A. B. C. D.5.如圖,為的直徑,,為上的兩點.若,,則的度數(shù)是()A. B. C. D.6.如圖,點C在弧ACB上,若∠OAB=20°,則∠ACB的度數(shù)為()A. B. C. D.7.把兩個同樣大小的含45°角的三角板如圖所示放置,其中一個三角板的銳角頂點與另一個的直角頂點重合于點,且另三個銳角頂點在同一直線上,若,則的長是()A. B. C.0.5 D.8.如圖,△ABC內接于⊙O,OD⊥AB于D,OE⊥AC于E,連結DE.且DE=,則弦BC的長為()A. B.2 C.3 D.9.如圖,廠房屋頂人字架(等腰三角形)的跨度BC=10m,∠B=36°,D為底邊BC的中點,則上弦AB的長約為()(結果保留小數(shù)點后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m10.為了比較甲乙兩足球隊的身高誰更整齊,分別量出每人身高,發(fā)現(xiàn)兩隊的平均身高一樣,甲、乙兩隊的方差分別是1.7、2.4,則下列說法正確的是()A.甲、乙兩隊身高一樣整齊 B.甲隊身高更整齊C.乙隊身高更整齊 D.無法確定甲、乙兩隊身高誰更整齊11.小明同學在學習了全等三角形的相關知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確12.點在二次函數(shù)y=x2+3x﹣5的圖像上,x與y對應值如下表:那么方程x2+3x﹣5=0的一個近似根是()A.1 B.1.1 C.1.2 D.1.3二、填空題(每題4分,共24分)13.比較大?。篲_____4.14.若點、在同一個反比例函數(shù)的圖象上,則的值為________.15.如圖,正六邊形ABCDEF內接于O,點M是邊CD的中點,連結AM,若圓O的半徑為2,則AM=____________.16.如圖,A、B、C為⊙O上三點,且∠ACB=35°,則∠OAB的度數(shù)是______度.17.“蜀南竹海位于宜賓市境內”是_______事件;(填“確定”或“隨機”)18.如圖,內接于,于點,,若的半徑,則的長為______.三、解答題(共78分)19.(8分)數(shù)學活動課上,老師提出問題:如圖1,有一張長,寬的長方形紙板,在紙板的四個角裁去四個相同的小正方形,然后把四邊折起來,做成-一個無蓋的盒子,問小正方形的邊長為多少時,盒子的體積最大.下面是探究過程,請補充完整:(1)設小正方形的邊長為,體積為,根據(jù)長方體的體積公式得到和的關系式;(2)確定自變量的取值范圍是(3)列出與的幾組對應值.······(4)在平面直角坐標系中,描出以補全后的表中各對對應值為坐標的點畫出該函數(shù)的圖象如圖2,結合畫出的函數(shù)圖象,當小正方形的邊長約為時,盒子的體積最大,最大值約為.(估讀值時精確到)20.(8分)永祚寺雙塔,又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑.位于太原市城區(qū)東南向山腳畔.數(shù)學活動小組的同學對其中一塔進行了測量.測量方法如下:如圖所示,間接測得該塔底部點到地面上一點的距離為,塔的頂端為點,且,在點處豎直放一根標桿,其頂端為,在的延長線上找一點,使三點在同一直線上,測得.(1)方法1,已知標桿,求該塔的高度;(2)方法2,測得,已知,求該塔的高度.21.(8分)已知x2+xy+y=12,y2+xy+x=18,求代數(shù)式3x2+3y2﹣2xy+x+y的值.22.(10分)如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點,與y軸交于點C,其中點A(-1,0).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發(fā),以每秒個單位長度的速度向點D運動,過點P作直線PQ∥y軸,與拋物線交于點Q,設運動時間為t(s).(1)直接寫出b,c的值及點D的坐標;(2)點E是拋物線上一動點,且位于第四象限,當△CBE的面積為6時,求出點E的坐標;(3)在線段PQ最長的條件下,點M在直線PQ上運動,點N在x軸上運動,當以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標.23.(10分)如圖,直線y=x+b與雙曲線y=(k為常數(shù),k≠0)在第一象限內交于點A(1,2),且與x軸、y軸分別交于B,C兩點.(1)求直線和雙曲線的解析式;(2)點P在x軸上,且△BCP的面積等于2,求P點的坐標.24.(10分)已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).(1)求證:直線l恒過拋物線C的頂點;(2)若a>0,h=1,當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.25.(12分)體育文化公司為某學校捐贈甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號,乙品牌有D、E兩種型號,現(xiàn)要從甲、乙兩種品牌的器材中各選購一種型號進行捐贈.
(1)下列事件是不可能事件的是.A.選購乙品牌的D型號B.既選購甲品牌也選購乙品牌C.選購甲品牌的A型號和乙品牌的D型號D.只選購甲品牌的A型號(2)寫出所有的選購方案(用列表法或樹狀圖);(3)如果在上述選購方案中,每種方案被選中的可能性相同,那么A型器材被選中的概率是多少?26.消費者在某火鍋店飯后買單時可以參與一個抽獎游戲,規(guī)則如下:有張紙牌,它們的背面都是小豬佩奇頭像,正面為張笑臉、張哭臉.現(xiàn)將張紙牌洗勻后背面朝上擺放到桌上,然后讓消費者去翻紙牌.(1)現(xiàn)小楊有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎,她從中隨機翻開一張紙牌,小楊獲獎的概率是________.(2)如糶小楊、小月都有翻兩張牌的機會,小楊先翻一張,放回后再翻一張;小月同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們誰獲獎的機會更大些?通過畫樹狀圖或列表法分析說明理由.
參考答案一、選擇題(每題4分,共48分)1、D【解析】如圖,作輔助線;首先證明△BEO∽△OFA,,得到;設B為(a,),A為(b,),得到OE=-a,EB=,OF=b,AF=,進而得到,此為解決問題的關鍵性結論;運用三角函數(shù)的定義證明知tan∠OAB=為定值,即可解決問題.【詳解】解:分別過B和A作BE⊥x軸于點E,AF⊥x軸于點F,則△BEO∽△OFA,∴,設點B為(a,),A為(b,),則OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根據(jù)勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一個定值,因此∠OAB的大小保持不變.故選D【點睛】該題主要考查了反比例函數(shù)圖象上點的坐標特征、相似三角形的判定等知識點及其應用問題;解題的方法是作輔助線,將分散的條件集中;解題的關鍵是靈活運用相似三角形的判定等知識點來分析、判斷、推理或解答.2、D【分析】根據(jù)增長率問題公式即可解決此題,二月為200(1+x),三月為200(1+x)2,三個月相加即得第一季度的營業(yè)額.【詳解】解:∵一月份的營業(yè)額為200萬元,平均每月增長率為x,∴二月份的營業(yè)額為200×(1+x),∴三月份的營業(yè)額為200×(1+x)×(1+x)=200×(1+x)2,∴可列方程為200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故選D.【點睛】此題考察增長率問題類一元二次方程的應用,注意:第一季度指一、二、三月的總和.3、A【分析】根據(jù)二次函數(shù)的性質得到拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,然后根據(jù)三個點離對稱軸的遠近判斷函數(shù)值的大小.【詳解】解:∵拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠,C(﹣2,y3)點離直線x=1最近,∴.故選A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質.4、B【分析】根據(jù)題意拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,可得平移后的頂點坐標.設向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a,令x=2,y=(a-)2+,由0≤a≤4,推出y的最大值和最小值,根據(jù)點D的縱坐標的變化情形,即可解決問題.【詳解】解:由題意,拋物線沿著射線方向平移個單位,點A向右平移4個單位,向上平移2個單位,∵拋物線=(x+1)2-1的頂點坐標為(-1,-1),設拋物線向右平移a個單位,則向上平移a個單位,拋物線的解析式為y=(x+1-a)2-1+a令x=2,y=(3-a)2-1+a,∴y=(a-)2+,∵0≤a≤4∴y的最大值為8,最小值為,∵a=4時,y=2,∴8-2+2(2-)=故選:B【點睛】本題考查的是拋物線上的點在拋物線平移時經(jīng)過的路程問題,解決問題的關鍵是在平移過程中點D的移動規(guī)律.5、B【分析】先連接OC,根據(jù)三條邊都相等可證明△OCB是等邊三角形,再利用圓周角定理即可求出角度.【詳解】解:如圖,連接OC.∵AB=2,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°.故選:B.【點睛】本題考查圓周角定理,等邊三角形的判定及性質等知識,作半徑是圓中常用到的輔助線需熟練掌握.6、C【分析】根據(jù)圓周角定理可得∠ACB=∠AOB,先求出∠AOB即可求出∠ACB的度數(shù).【詳解】解:∵∠ACB=∠AOB,
而∠AOB=180°-2×20°=140°,
∴∠ACB=×140°=70°.
故選:C.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.7、D【分析】過點D作BC的垂線DF,垂足為F,由題意可得出BC=AD=2,進而得出DF=BF=1,利用勾股定理可得出AF的長,即可得出AB的長.【詳解】解:過點D作BC的垂線DF,垂足為F,由題意可得出,BC=AD=2,根據(jù)等腰三角形的三線合一的性質可得出,DF=BF=1利用勾股定理求得:∴故選:D.【點睛】本題考查的知識點是等腰直角三角形的性質,靈活運用等腰直角三角形的性質是解此題的關鍵.8、C【分析】由垂徑定理可得AD=BD,AE=CE,由三角形中位線定理可求解.【詳解】解:∵OD⊥AB,OE⊥AC,∴AD=BD,AE=CE,∴BC=2DE=2×=3故選:C.【點睛】本題考查了三角形的外接圓與外心,三角形的中位線定理,垂徑定理等知識,靈活運用這些性質進行推理是本題的關鍵.9、B【分析】先根據(jù)等腰三角形的性質得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入計算可得.【詳解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故選:B.【點睛】本題考查解直接三角形的應用,解題的關鍵是根據(jù)等腰三角形的性質構造出直角三角形Rt△ABD,再利用三角函數(shù)求解.10、B【解析】根據(jù)方差的意義可作出判斷,方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲=1.7,S乙=2.4,∴S甲<S乙,∴甲隊成員身高更整齊;故選B.【點睛】此題考查方差,掌握波動越小,數(shù)據(jù)越穩(wěn)定是解題關鍵11、A【分析】過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內部到角的兩邊的距離相等的點在這個角的平分線上),故選A.【點睛】本題主要考查了基本作圖,關鍵是掌握角的內部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.12、C【分析】觀察表格可得0.04更接近于0,得到所求方程的近似根即可.【詳解】解:觀察表格得:方程x2+3x?5=0的一個近似根為1.2,故選:C.【點睛】此題考查了圖象法求一元二次方程的近似根,弄清表格中的數(shù)據(jù)是解本題的關鍵.二、填空題(每題4分,共24分)13、>【分析】用放縮法比較即可.【詳解】∵,∴>3+1=4.故答案為:>.【點睛】此題主要考查了估算無理數(shù)的大小,在確定形如(a≥0)的無理數(shù)的整數(shù)部分時,常用的方法是“夾逼法”,其依據(jù)是平方和開平方互為逆運算.在應用“夾逼法”估算無理數(shù)時,關鍵是找出位于無理數(shù)兩邊的平方數(shù),則無理數(shù)的整數(shù)部分即為較小的平方數(shù)的算術平方根.14、【分析】設反比例函數(shù)的解析式為(k為常數(shù),k≠0),把A(3,8)代入函數(shù)解析式求出k,得出函數(shù)解析式,把B點的坐標代入,即可求出答案.【詳解】解:設反比例函數(shù)的解析式為(k為常數(shù),k≠0),把A(3,8)代入函數(shù)解析式得:k=24,即,把B點的坐標代入得:故答案為?6.【點睛】考查待定系數(shù)法求反比例函數(shù)解析式,熟練掌握待定系數(shù)法是解題的關鍵.15、【分析】連接AD,過M作MG⊥AD于G,根據(jù)正六邊形的相關性質,求得AD,MD的值,再根據(jù)∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【詳解】解:連接AD,過M作MG⊥AD于G,則由正六邊形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案為.【點睛】本題考查了正多邊形和圓、正六邊形的性質、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質,作出輔助線構造直角三角形是解題的關鍵.16、1【分析】根據(jù)題意易得∠AOB=70°,然后由等腰三角形的性質及三角形內角和可求解.【詳解】解:∵OA=OB,∴∠OAB=∠OBA,∵∠ACB=35°,∴∠AOB=2∠ACB=70°,∴;故答案為1.【點睛】本題主要考查圓周角定理,熟練掌握圓周角定理是解題的關鍵.17、確定【分析】根據(jù)“確定定義”或“隨機定義”即可解答.【詳解】“蜀南竹海是國家AAAA級旅游勝地,位于宜賓市境內”,所以是確定事件.故答案為:確定.【點睛】本題考查必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,確定事件包括必然事件、不可能事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,.18、【分析】連接OC,先證出△ADB為等腰直角三角形,從而得出∠ABD=45°,然后根據(jù)同弧所對的圓周角是圓心角的一半即可求出∠AOC,然后根據(jù)勾股定理即可求出AC.【詳解】解:連接OC∵,,∴△ADB為等腰直角三角形∴∠ABD=45°∴∠AOC=2∠ABD=90°∵的半徑∴OC=OA=2在Rt△OAC中,AC=故答案為:.【點睛】此題考查的是等腰直角三角形的判定及性質、圓周角定理和勾股定理,掌握等腰直角三角形的判定及性質、同弧所對的圓周角是圓心角的一半和利用勾股定理解直角三角形是解決此題的關鍵.三、解答題(共78分)19、(1);(2);(3)3,2;(4)0.55【分析】(1)根據(jù)長方形和正方形邊長分別求出長方體的長、寬、高,然后即可得出和的關系式;(2)邊長都大于零,列出不等式組,求解即可;(3)將的值代入關系式,即可得解;(4)根據(jù)函數(shù)圖象,由最大值即可估算出的值.【詳解】(1)由題意,得長方體的長為,寬為,高為∴y和x的關系式:(2)由(1)得∴變量x的取值范圍是;(3)將和代入(1)中關系式,得分別為3,2;(4)由圖象可知,與3.03對應的值約為0.55.【點睛】此題主要考查展開圖折疊成長方體,以及與函數(shù)的綜合運用,熟練掌握,即可解題.20、(1)55m;(2)54.5m【分析】(1)直接利用相似三角形的判定與性質得出,進而得出答案;(2)根據(jù)銳角三角函數(shù)的定義列出,然后代入求值即可.【詳解】解:則即解得:答:該塔的高度為55m.在中答:該塔的高度為【點睛】本題考查相似三角形的判定和性質及解直角三角形的應用,熟練掌握相似三角形對應邊的比相等和角的正切值的求法是本題的解題關鍵.21、或【分析】分別將已知的兩個等式相加和相減,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代數(shù)式的值即可.【詳解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴將⑤分別代入④得,x﹣y=或x﹣y=﹣,∴或當時,當時,
故答案為:或【點睛】本題考查解二元一次方程組;理解題意,將已知式子進行合理的變形,再求二元一次方程組的解是解題的關鍵.22、(1)b=2,c=1,D(2,3);(2)E(4,-5);(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【分析】(1)將點A分別代入y=-x2+bx+3,y=x+c中求出b、c的值,確定解析式,再解兩個函數(shù)關系式組成的方程組即可得到點D的坐標;(2))過點E作EF⊥y軸,設E(x,-x2+2x+3),先求出點B、C的坐標,再利用面積加減關系表示出△CBE的面積,即可求出點E的坐標.(3)分別以點D、M、N為直角頂點討論△MND是等腰直角三角形時點N的坐標.【詳解】(1)將A(-1,0)代入y=-x2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x2+2x+3,將點A代入y=x+c中,得-1+c=0,解得c=1,∴y=x+1,解,解得,(舍去),∴D(2,3).∴b=2,c=1,D(2,3).(2)過點E作EF⊥y軸,設E(x,-x2+2x+3),當y=-x2+2x+3中y=0時,得-x2+2x+3=0,解得x1=3,x2=-1(舍去),∴B(3,0).∵C(0,3),∴,∴,解得x1=4,x2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直線AD的解析式為y=x+1,設P(m,m+1),則Q(m,-m2+2m+3),∴線段PQ的長度h=-m2+2m+3-(m+1)=,∴當=0.5,線段PQ有最大值.當∠D是直角時,不存在△MND是等腰直角三角形的情形;當∠M是直角時,如圖1,點M在線段DN的垂直平分線上,此時N1(2,0);當∠M是直角時,如圖2,作DE⊥x軸,M2E⊥HE,N2H⊥HE,∴∠H=∠E=90,∵△M2N2D是等腰直角三角形,∴N2M2=M2D,∠N2M2D=90,∵∠N2M2H=∠M2DE,∴△N2M2H≌△M2DE,∴N2H=M2E=2-0.5=1.5,M2H=DE,∴E(2,-1.5),∴M2H=DE=3+1.5=4.5,∴ON2=4.5-0.5=4,∴N2(-4,0);當∠N是直角時,如圖3,作DE⊥x軸,∴∠N3HM3=∠DEN3=90,∵△M3N3D是等腰直角三角形,∴N3M3=N3D,∠DN3M3=90,∵∠DN3E=∠N3M3H,∴△DN3E≌△N3M3H,∴N3H=DE=3,∴N3O=3-0.5=2.5,∴N3(-2.5,0);當∠N是直角時,如圖4,作DE⊥x軸,∴∠N4HM4=∠DEN4=90,∵△M4N4D是等腰直角三角形,∴N4M4=N4D,∠DN4M4=90,∵∠DN4E=∠N4M4H,∴△DN4E≌△N4M4H,∴N4H=DE=3,∴N4O=3+0.5=3.5,∴N4(3.5,0);綜上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【點睛】此題是二次函數(shù)的綜合題,考查待定系數(shù)法求函數(shù)解析式;根據(jù)函數(shù)性質得到點坐標,由此求出圖象中圖形的面積;還考查了圖象中構成的等腰直角三角形的情況,此時依據(jù)等腰直角三角形的性質,求出點N的坐標.23、(1)y=;y=x+1;(2)P點的坐標為(3,0)或(﹣5,0).【解析】(1)把A(1,2)代入雙曲線以及直線y=x+b,分別可得k,b的值;(2)先根據(jù)直線解析式得到BO=CO=1,再根據(jù)△BCP的面積等于2,即可得到P的坐標.【詳解】解:(1)把A(1,2)代入雙曲線y=,可得k=2,∴雙曲線的解析式為y=;把A(1,2)代入直線y=x+b,可得b=1,∴直線的解析式為y=x+1;(2)設P點的坐標為(x,0),在y=x+1中,令y=0,則x=﹣1;令x=0,則y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面積等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P點的坐標為(3,0)或(﹣5,0).【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,解題時注意:反比例函數(shù)與一次函數(shù)交點的坐標同時滿足兩個函數(shù)解析式.24、(1)證明見解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函數(shù)的性質找出拋物線的頂點坐標,將x=h代入一次函數(shù)解析式中可得出點(h,2)在直線1上,進而可證出直線l恒過拋物線C1的頂點;(2)由a>0可得出當x=h=1時y1=a(x﹣h)2+2取得最小值2,結合當t≤x≤t+3時二次函數(shù)y1=a(x﹣h)2+2的最小值為2,可得出關于t的一元一次不等式組,解之即可得出結論;(3)令y1=y(tǒng)2可得出關于x的一元二次方程,解之可求出點P,Q的橫坐標,由線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,可得出>1或<﹣1,再結合1≤k≤3,即可求出a的取值范圍.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消毒劑與微生物相互作用-洞察分析
- 水產養(yǎng)殖中魚病的預防與控制技術研究-洞察分析
- 冬季防火人人有責精彩講話稿(5篇)
- 辦公室文化與高效報告文化構建
- 豬肉加工廠設備采購招標合同三篇
- 辦公用品在小紅書的社交化銷售策略研究
- 個性化字體在多媒體中的運用
- 辦公環(huán)境中嵌入式系統(tǒng)的節(jié)能設計挑戰(zhàn)與解決方案
- 專業(yè)師資的跨界交流與合作機會探討
- 辦公室服務升級與客戶體驗的關聯(lián)分析
- 人教版教材《原子的結構》推薦3課件
- 基于PLC的禽舍環(huán)境控制系統(tǒng)設計
- 【詳細版】小學英語人教新起點四年級下冊Unit4Hobbies王露22一師一優(yōu)課課例教案
- 廣東省綜合評標專家?guī)煸囶}
- 焦化學產品及硫銨工藝
- 淺談爐水中氯離子濃度高的原因分析與防止
- 鋁合金壓鑄件的標準
- 浙美版三年級上冊美術試卷(共4頁)
- 航空開傘器機械大報告
- 關于人工費結清證明
- 全國國防教育示范學校形象標識、金屬牌匾樣式
評論
0/150
提交評論